Step | Hyp | Ref
| Expression |
1 | | df-of 7685 |
. . . 4
⊢
∘f 𝑅 =
(𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝐹 ∈ V →
∘f 𝑅 =
(𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))))) |
3 | | dmeq 5906 |
. . . . . . 7
⊢ (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹) |
4 | | dmeq 5906 |
. . . . . . 7
⊢ (𝑔 = ∅ → dom 𝑔 = dom ∅) |
5 | 3, 4 | ineqan12d 4212 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = ∅) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom ∅)) |
6 | 5 | mpteq1d 5244 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ 𝑔 = ∅) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
7 | 6 | adantl 480 |
. . . 4
⊢ ((𝐹 ∈ V ∧ (𝑓 = 𝐹 ∧ 𝑔 = ∅)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
8 | | dm0 5923 |
. . . . . . . 8
⊢ dom
∅ = ∅ |
9 | 8 | ineq2i 4207 |
. . . . . . 7
⊢ (dom
𝐹 ∩ dom ∅) = (dom
𝐹 ∩
∅) |
10 | | in0 4393 |
. . . . . . 7
⊢ (dom
𝐹 ∩ ∅) =
∅ |
11 | 9, 10 | eqtri 2753 |
. . . . . 6
⊢ (dom
𝐹 ∩ dom ∅) =
∅ |
12 | 11 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ V ∧ (𝑓 = 𝐹 ∧ 𝑔 = ∅)) → (dom 𝐹 ∩ dom ∅) =
∅) |
13 | 12 | mpteq1d 5244 |
. . . 4
⊢ ((𝐹 ∈ V ∧ (𝑓 = 𝐹 ∧ 𝑔 = ∅)) → (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = (𝑥 ∈ ∅ ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥)))) |
14 | | mpt0 6698 |
. . . . 5
⊢ (𝑥 ∈ ∅ ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = ∅ |
15 | 14 | a1i 11 |
. . . 4
⊢ ((𝐹 ∈ V ∧ (𝑓 = 𝐹 ∧ 𝑔 = ∅)) → (𝑥 ∈ ∅ ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = ∅) |
16 | 7, 13, 15 | 3eqtrd 2769 |
. . 3
⊢ ((𝐹 ∈ V ∧ (𝑓 = 𝐹 ∧ 𝑔 = ∅)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓‘𝑥)𝑅(𝑔‘𝑥))) = ∅) |
17 | | id 22 |
. . 3
⊢ (𝐹 ∈ V → 𝐹 ∈ V) |
18 | | 0ex 5308 |
. . . 4
⊢ ∅
∈ V |
19 | 18 | a1i 11 |
. . 3
⊢ (𝐹 ∈ V → ∅ ∈
V) |
20 | 2, 16, 17, 19, 19 | ovmpod 7573 |
. 2
⊢ (𝐹 ∈ V → (𝐹 ∘f 𝑅∅) =
∅) |
21 | 1 | reldmmpo 7555 |
. . 3
⊢ Rel dom
∘f 𝑅 |
22 | 21 | ovprc1 7458 |
. 2
⊢ (¬
𝐹 ∈ V → (𝐹 ∘f 𝑅∅) =
∅) |
23 | 20, 22 | pm2.61i 182 |
1
⊢ (𝐹 ∘f 𝑅∅) =
∅ |