Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  of0r Structured version   Visualization version   GIF version

Theorem of0r 32696
Description: Function operation with the empty function. (Contributed by Thierry Arnoux, 27-May-2025.)
Assertion
Ref Expression
of0r (𝐹f 𝑅∅) = ∅

Proof of Theorem of0r
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 7714 . . . 4 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
21a1i 11 . . 3 (𝐹 ∈ V → ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))))
3 dmeq 5928 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
4 dmeq 5928 . . . . . . 7 (𝑔 = ∅ → dom 𝑔 = dom ∅)
53, 4ineqan12d 4243 . . . . . 6 ((𝑓 = 𝐹𝑔 = ∅) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom ∅))
65mpteq1d 5261 . . . . 5 ((𝑓 = 𝐹𝑔 = ∅) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
76adantl 481 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
8 dm0 5945 . . . . . . . 8 dom ∅ = ∅
98ineq2i 4238 . . . . . . 7 (dom 𝐹 ∩ dom ∅) = (dom 𝐹 ∩ ∅)
10 in0 4418 . . . . . . 7 (dom 𝐹 ∩ ∅) = ∅
119, 10eqtri 2768 . . . . . 6 (dom 𝐹 ∩ dom ∅) = ∅
1211a1i 11 . . . . 5 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (dom 𝐹 ∩ dom ∅) = ∅)
1312mpteq1d 5261 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
14 mpt0 6722 . . . . 5 (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅
1514a1i 11 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅)
167, 13, 153eqtrd 2784 . . 3 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅)
17 id 22 . . 3 (𝐹 ∈ V → 𝐹 ∈ V)
18 0ex 5325 . . . 4 ∅ ∈ V
1918a1i 11 . . 3 (𝐹 ∈ V → ∅ ∈ V)
202, 16, 17, 19, 19ovmpod 7602 . 2 (𝐹 ∈ V → (𝐹f 𝑅∅) = ∅)
211reldmmpo 7584 . . 3 Rel dom ∘f 𝑅
2221ovprc1 7487 . 2 𝐹 ∈ V → (𝐹f 𝑅∅) = ∅)
2320, 22pm2.61i 182 1 (𝐹f 𝑅∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cin 3975  c0 4352  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448  cmpo 7450  f cof 7712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fn 6576  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714
This theorem is referenced by:  1arithidom  33530
  Copyright terms: Public domain W3C validator