Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  of0r Structured version   Visualization version   GIF version

Theorem of0r 32695
Description: Function operation with the empty function. (Contributed by Thierry Arnoux, 27-May-2025.)
Assertion
Ref Expression
of0r (𝐹f 𝑅∅) = ∅

Proof of Theorem of0r
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 7697 . . . 4 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
21a1i 11 . . 3 (𝐹 ∈ V → ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))))
3 dmeq 5917 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
4 dmeq 5917 . . . . . . 7 (𝑔 = ∅ → dom 𝑔 = dom ∅)
53, 4ineqan12d 4230 . . . . . 6 ((𝑓 = 𝐹𝑔 = ∅) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom ∅))
65mpteq1d 5243 . . . . 5 ((𝑓 = 𝐹𝑔 = ∅) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
76adantl 481 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
8 dm0 5934 . . . . . . . 8 dom ∅ = ∅
98ineq2i 4225 . . . . . . 7 (dom 𝐹 ∩ dom ∅) = (dom 𝐹 ∩ ∅)
10 in0 4401 . . . . . . 7 (dom 𝐹 ∩ ∅) = ∅
119, 10eqtri 2763 . . . . . 6 (dom 𝐹 ∩ dom ∅) = ∅
1211a1i 11 . . . . 5 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (dom 𝐹 ∩ dom ∅) = ∅)
1312mpteq1d 5243 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
14 mpt0 6711 . . . . 5 (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅
1514a1i 11 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅)
167, 13, 153eqtrd 2779 . . 3 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅)
17 id 22 . . 3 (𝐹 ∈ V → 𝐹 ∈ V)
18 0ex 5313 . . . 4 ∅ ∈ V
1918a1i 11 . . 3 (𝐹 ∈ V → ∅ ∈ V)
202, 16, 17, 19, 19ovmpod 7585 . 2 (𝐹 ∈ V → (𝐹f 𝑅∅) = ∅)
211reldmmpo 7567 . . 3 Rel dom ∘f 𝑅
2221ovprc1 7470 . 2 𝐹 ∈ V → (𝐹f 𝑅∅) = ∅)
2320, 22pm2.61i 182 1 (𝐹f 𝑅∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cin 3962  c0 4339  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431  cmpo 7433  f cof 7695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697
This theorem is referenced by:  1arithidom  33545
  Copyright terms: Public domain W3C validator