Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  of0r Structured version   Visualization version   GIF version

Theorem of0r 32661
Description: Function operation with the empty function. (Contributed by Thierry Arnoux, 27-May-2025.)
Assertion
Ref Expression
of0r (𝐹f 𝑅∅) = ∅

Proof of Theorem of0r
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-of 7676 . . . 4 f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
21a1i 11 . . 3 (𝐹 ∈ V → ∘f 𝑅 = (𝑓 ∈ V, 𝑔 ∈ V ↦ (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥)))))
3 dmeq 5888 . . . . . . 7 (𝑓 = 𝐹 → dom 𝑓 = dom 𝐹)
4 dmeq 5888 . . . . . . 7 (𝑔 = ∅ → dom 𝑔 = dom ∅)
53, 4ineqan12d 4202 . . . . . 6 ((𝑓 = 𝐹𝑔 = ∅) → (dom 𝑓 ∩ dom 𝑔) = (dom 𝐹 ∩ dom ∅))
65mpteq1d 5215 . . . . 5 ((𝑓 = 𝐹𝑔 = ∅) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
76adantl 481 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
8 dm0 5905 . . . . . . . 8 dom ∅ = ∅
98ineq2i 4197 . . . . . . 7 (dom 𝐹 ∩ dom ∅) = (dom 𝐹 ∩ ∅)
10 in0 4375 . . . . . . 7 (dom 𝐹 ∩ ∅) = ∅
119, 10eqtri 2759 . . . . . 6 (dom 𝐹 ∩ dom ∅) = ∅
1211a1i 11 . . . . 5 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (dom 𝐹 ∩ dom ∅) = ∅)
1312mpteq1d 5215 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝐹 ∩ dom ∅) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))))
14 mpt0 6685 . . . . 5 (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅
1514a1i 11 . . . 4 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ ∅ ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅)
167, 13, 153eqtrd 2775 . . 3 ((𝐹 ∈ V ∧ (𝑓 = 𝐹𝑔 = ∅)) → (𝑥 ∈ (dom 𝑓 ∩ dom 𝑔) ↦ ((𝑓𝑥)𝑅(𝑔𝑥))) = ∅)
17 id 22 . . 3 (𝐹 ∈ V → 𝐹 ∈ V)
18 0ex 5282 . . . 4 ∅ ∈ V
1918a1i 11 . . 3 (𝐹 ∈ V → ∅ ∈ V)
202, 16, 17, 19, 19ovmpod 7564 . 2 (𝐹 ∈ V → (𝐹f 𝑅∅) = ∅)
211reldmmpo 7546 . . 3 Rel dom ∘f 𝑅
2221ovprc1 7449 . 2 𝐹 ∈ V → (𝐹f 𝑅∅) = ∅)
2320, 22pm2.61i 182 1 (𝐹f 𝑅∅) = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3464  cin 3930  c0 4313  cmpt 5206  dom cdm 5659  cfv 6536  (class class class)co 7410  cmpo 7412  f cof 7674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fn 6539  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676
This theorem is referenced by:  1arithidom  33557
  Copyright terms: Public domain W3C validator