| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmaprd | Structured version Visualization version GIF version | ||
| Description: Deduction associated with elmapd 8773. Reverse direction of elmapdd 8774. (Contributed by Thierry Arnoux, 13-Oct-2025.) |
| Ref | Expression |
|---|---|
| elmaprd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| elmaprd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| elmaprd.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m 𝐴)) |
| Ref | Expression |
|---|---|
| elmaprd | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmaprd.3 | . 2 ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m 𝐴)) | |
| 2 | elmaprd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 3 | elmaprd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | 2, 3 | elmapd 8773 | . 2 ⊢ (𝜑 → (𝐹 ∈ (𝐵 ↑m 𝐴) ↔ 𝐹:𝐴⟶𝐵)) |
| 5 | 1, 4 | mpbid 232 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ⟶wf 6485 (class class class)co 7355 ↑m cmap 8759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-map 8761 |
| This theorem is referenced by: elrgspn 33256 elrgspnsubrun 33259 extvfvvcl 33628 extvfvcl 33629 mplmulmvr 33632 evlvarval 33634 evlextv 33635 mplvrpmlem 33636 mplvrpmga 33638 mplvrpmmhm 33639 mplvrpmrhm 33640 esplymhp 33654 esplyfv1 33655 esplysply 33657 esplyfval3 33658 esplyind 33659 vieta 33664 fldextrspunlsplem 33758 fldextrspunlsp 33759 extdgfialg 33779 |
| Copyright terms: Public domain | W3C validator |