Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmaprd Structured version   Visualization version   GIF version

Theorem elmaprd 32609
Description: Deduction associated with elmapd 8815. Reverse direction of elmapdd 8816. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elmaprd.1 (𝜑𝐴𝑉)
elmaprd.2 (𝜑𝐵𝑊)
elmaprd.3 (𝜑𝐹 ∈ (𝐵m 𝐴))
Assertion
Ref Expression
elmaprd (𝜑𝐹:𝐴𝐵)

Proof of Theorem elmaprd
StepHypRef Expression
1 elmaprd.3 . 2 (𝜑𝐹 ∈ (𝐵m 𝐴))
2 elmaprd.2 . . 3 (𝜑𝐵𝑊)
3 elmaprd.1 . . 3 (𝜑𝐴𝑉)
42, 3elmapd 8815 . 2 (𝜑 → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
51, 4mpbid 232 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wf 6509  (class class class)co 7389  m cmap 8801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-map 8803
This theorem is referenced by:  elrgspn  33203  elrgspnsubrun  33206  fldextrspunlsplem  33674  fldextrspunlsp  33675
  Copyright terms: Public domain W3C validator