Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmaprd Structured version   Visualization version   GIF version

Theorem elmaprd 32685
Description: Deduction associated with elmapd 8773. Reverse direction of elmapdd 8774. (Contributed by Thierry Arnoux, 13-Oct-2025.)
Hypotheses
Ref Expression
elmaprd.1 (𝜑𝐴𝑉)
elmaprd.2 (𝜑𝐵𝑊)
elmaprd.3 (𝜑𝐹 ∈ (𝐵m 𝐴))
Assertion
Ref Expression
elmaprd (𝜑𝐹:𝐴𝐵)

Proof of Theorem elmaprd
StepHypRef Expression
1 elmaprd.3 . 2 (𝜑𝐹 ∈ (𝐵m 𝐴))
2 elmaprd.2 . . 3 (𝜑𝐵𝑊)
3 elmaprd.1 . . 3 (𝜑𝐴𝑉)
42, 3elmapd 8773 . 2 (𝜑 → (𝐹 ∈ (𝐵m 𝐴) ↔ 𝐹:𝐴𝐵))
51, 4mpbid 232 1 (𝜑𝐹:𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wf 6485  (class class class)co 7355  m cmap 8759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-map 8761
This theorem is referenced by:  elrgspn  33256  elrgspnsubrun  33259  extvfvvcl  33628  extvfvcl  33629  mplmulmvr  33632  evlvarval  33634  evlextv  33635  mplvrpmlem  33636  mplvrpmga  33638  mplvrpmmhm  33639  mplvrpmrhm  33640  esplymhp  33654  esplyfv1  33655  esplysply  33657  esplyfval3  33658  esplyind  33659  vieta  33664  fldextrspunlsplem  33758  fldextrspunlsp  33759  extdgfialg  33779
  Copyright terms: Public domain W3C validator