Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tz9.12 | Structured version Visualization version GIF version |
Description: A set is well-founded if all of its elements are well-founded. Proposition 9.12 of [TakeutiZaring] p. 78. The main proof consists of tz9.12lem1 9242 through tz9.12lem3 9244. (Contributed by NM, 22-Sep-2003.) |
Ref | Expression |
---|---|
tz9.12.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.12 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tz9.12.1 | . . . 4 ⊢ 𝐴 ∈ V | |
2 | eqid 2759 | . . . 4 ⊢ (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
3 | 1, 2 | tz9.12lem2 9243 | . . 3 ⊢ suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On |
4 | 3 | onsuci 7553 | . 2 ⊢ suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On |
5 | 1, 2 | tz9.12lem3 9244 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) |
6 | fveq2 6659 | . . . 4 ⊢ (𝑦 = suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) → (𝑅1‘𝑦) = (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) | |
7 | 6 | eleq2d 2838 | . . 3 ⊢ (𝑦 = suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) → (𝐴 ∈ (𝑅1‘𝑦) ↔ 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴)))) |
8 | 7 | rspcev 3542 | . 2 ⊢ ((suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On ∧ 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
9 | 4, 5, 8 | sylancr 591 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ∀wral 3071 ∃wrex 3072 {crab 3075 Vcvv 3410 ∪ cuni 4799 ∩ cint 4839 ↦ cmpt 5113 “ cima 5528 Oncon0 6170 suc csuc 6172 ‘cfv 6336 𝑅1cr1 9217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-om 7581 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-r1 9219 |
This theorem is referenced by: tz9.13 9246 r1elss 9261 |
Copyright terms: Public domain | W3C validator |