| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.12 | Structured version Visualization version GIF version | ||
| Description: A set is well-founded if all of its elements are well-founded. Proposition 9.12 of [TakeutiZaring] p. 78. The main proof consists of tz9.12lem1 9801 through tz9.12lem3 9803. (Contributed by NM, 22-Sep-2003.) |
| Ref | Expression |
|---|---|
| tz9.12.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz9.12 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | eqid 2735 | . . . 4 ⊢ (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
| 3 | 1, 2 | tz9.12lem2 9802 | . . 3 ⊢ suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On |
| 4 | 3 | onsuci 7833 | . 2 ⊢ suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On |
| 5 | 1, 2 | tz9.12lem3 9803 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) |
| 6 | fveq2 6876 | . . . 4 ⊢ (𝑦 = suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) → (𝑅1‘𝑦) = (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) | |
| 7 | 6 | eleq2d 2820 | . . 3 ⊢ (𝑦 = suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) → (𝐴 ∈ (𝑅1‘𝑦) ↔ 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴)))) |
| 8 | 7 | rspcev 3601 | . 2 ⊢ ((suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On ∧ 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
| 9 | 4, 5, 8 | sylancr 587 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 {crab 3415 Vcvv 3459 ∪ cuni 4883 ∩ cint 4922 ↦ cmpt 5201 “ cima 5657 Oncon0 6352 suc csuc 6354 ‘cfv 6531 𝑅1cr1 9776 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-r1 9778 |
| This theorem is referenced by: tz9.13 9805 r1elss 9820 |
| Copyright terms: Public domain | W3C validator |