| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.12 | Structured version Visualization version GIF version | ||
| Description: A set is well-founded if all of its elements are well-founded. Proposition 9.12 of [TakeutiZaring] p. 78. The main proof consists of tz9.12lem1 9686 through tz9.12lem3 9688. (Contributed by NM, 22-Sep-2003.) |
| Ref | Expression |
|---|---|
| tz9.12.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz9.12 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tz9.12.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 2 | eqid 2731 | . . . 4 ⊢ (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) = (𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) | |
| 3 | 1, 2 | tz9.12lem2 9687 | . . 3 ⊢ suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On |
| 4 | 3 | onsuci 7775 | . 2 ⊢ suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On |
| 5 | 1, 2 | tz9.12lem3 9688 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) |
| 6 | fveq2 6828 | . . . 4 ⊢ (𝑦 = suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) → (𝑅1‘𝑦) = (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) | |
| 7 | 6 | eleq2d 2817 | . . 3 ⊢ (𝑦 = suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) → (𝐴 ∈ (𝑅1‘𝑦) ↔ 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴)))) |
| 8 | 7 | rspcev 3572 | . 2 ⊢ ((suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴) ∈ On ∧ 𝐴 ∈ (𝑅1‘suc suc ∪ ((𝑧 ∈ V ↦ ∩ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1‘𝑣)}) “ 𝐴))) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
| 9 | 4, 5, 8 | sylancr 587 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ On 𝑥 ∈ (𝑅1‘𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1‘𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 ∪ cuni 4858 ∩ cint 4897 ↦ cmpt 5174 “ cima 5622 Oncon0 6312 suc csuc 6314 ‘cfv 6487 𝑅1cr1 9661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-r1 9663 |
| This theorem is referenced by: tz9.13 9690 r1elss 9705 r1filimi 35121 |
| Copyright terms: Public domain | W3C validator |