MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.12 Structured version   Visualization version   GIF version

Theorem tz9.12 9859
Description: A set is well-founded if all of its elements are well-founded. Proposition 9.12 of [TakeutiZaring] p. 78. The main proof consists of tz9.12lem1 9856 through tz9.12lem3 9858. (Contributed by NM, 22-Sep-2003.)
Hypothesis
Ref Expression
tz9.12.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.12 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1𝑦))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem tz9.12
Dummy variables 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tz9.12.1 . . . 4 𝐴 ∈ V
2 eqid 2740 . . . 4 (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) = (𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)})
31, 2tz9.12lem2 9857 . . 3 suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴) ∈ On
43onsuci 7875 . 2 suc suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴) ∈ On
51, 2tz9.12lem3 9858 . 2 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → 𝐴 ∈ (𝑅1‘suc suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴)))
6 fveq2 6920 . . . 4 (𝑦 = suc suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴) → (𝑅1𝑦) = (𝑅1‘suc suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴)))
76eleq2d 2830 . . 3 (𝑦 = suc suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴) → (𝐴 ∈ (𝑅1𝑦) ↔ 𝐴 ∈ (𝑅1‘suc suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴))))
87rspcev 3635 . 2 ((suc suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴) ∈ On ∧ 𝐴 ∈ (𝑅1‘suc suc ((𝑧 ∈ V ↦ {𝑣 ∈ On ∣ 𝑧 ∈ (𝑅1𝑣)}) “ 𝐴))) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1𝑦))
94, 5, 8sylancr 586 1 (∀𝑥𝐴𝑦 ∈ On 𝑥 ∈ (𝑅1𝑦) → ∃𝑦 ∈ On 𝐴 ∈ (𝑅1𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488   cuni 4931   cint 4970  cmpt 5249  cima 5703  Oncon0 6395  suc csuc 6397  cfv 6573  𝑅1cr1 9831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-r1 9833
This theorem is referenced by:  tz9.13  9860  r1elss  9875
  Copyright terms: Public domain W3C validator