MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgop Structured version   Visualization version   GIF version

Theorem vtxdgop 29503
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
vtxdgop (𝐺𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))

Proof of Theorem vtxdgop
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5475 . . 3 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
2 fvex 6920 . . . . . 6 (Vtx‘𝐺) ∈ V
3 fvex 6920 . . . . . 6 (iEdg‘𝐺) ∈ V
42, 3opvtxfvi 29041 . . . . 5 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺)
54eqcomi 2744 . . . 4 (Vtx‘𝐺) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
62, 3opiedgfvi 29042 . . . . 5 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺)
76eqcomi 2744 . . . 4 (iEdg‘𝐺) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
8 eqid 2735 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
95, 7, 8vtxdgfval 29500 . . 3 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
101, 9mp1i 13 . 2 (𝐺𝑊 → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
11 df-ov 7434 . . 3 ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
1211a1i 11 . 2 (𝐺𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩))
13 eqid 2735 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
14 eqid 2735 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
1513, 14, 8vtxdgfval 29500 . 2 (𝐺𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
1610, 12, 153eqtr4rd 2786 1 (𝐺𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  {csn 4631  cop 4637  cmpt 5231  dom cdm 5689  cfv 6563  (class class class)co 7431   +𝑒 cxad 13150  chash 14366  Vtxcvtx 29028  iEdgciedg 29029  VtxDegcvtxdg 29498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-1st 8013  df-2nd 8014  df-vtx 29030  df-iedg 29031  df-vtxdg 29499
This theorem is referenced by:  finsumvtxdg2size  29583
  Copyright terms: Public domain W3C validator