| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdgop | Structured version Visualization version GIF version | ||
| Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.) |
| Ref | Expression |
|---|---|
| vtxdgop | ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5407 | . . 3 ⊢ 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V | |
| 2 | fvex 6835 | . . . . . 6 ⊢ (Vtx‘𝐺) ∈ V | |
| 3 | fvex 6835 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
| 4 | 2, 3 | opvtxfvi 28954 | . . . . 5 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
| 5 | 4 | eqcomi 2738 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 6 | 2, 3 | opiedgfvi 28955 | . . . . 5 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
| 7 | 6 | eqcomi 2738 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 8 | eqid 2729 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
| 9 | 5, 7, 8 | vtxdgfval 29413 | . . 3 ⊢ (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
| 10 | 1, 9 | mp1i 13 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
| 11 | df-ov 7352 | . . 3 ⊢ ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)) |
| 13 | eqid 2729 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 14 | eqid 2729 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 15 | 13, 14, 8 | vtxdgfval 29413 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
| 16 | 10, 12, 15 | 3eqtr4rd 2775 | 1 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3394 Vcvv 3436 {csn 4577 〈cop 4583 ↦ cmpt 5173 dom cdm 5619 ‘cfv 6482 (class class class)co 7349 +𝑒 cxad 13012 ♯chash 14237 Vtxcvtx 28941 iEdgciedg 28942 VtxDegcvtxdg 29411 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-1st 7924 df-2nd 7925 df-vtx 28943 df-iedg 28944 df-vtxdg 29412 |
| This theorem is referenced by: finsumvtxdg2size 29496 |
| Copyright terms: Public domain | W3C validator |