|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > vtxdgop | Structured version Visualization version GIF version | ||
| Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.) | 
| Ref | Expression | 
|---|---|
| vtxdgop | ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | opex 5469 | . . 3 ⊢ 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V | |
| 2 | fvex 6919 | . . . . . 6 ⊢ (Vtx‘𝐺) ∈ V | |
| 3 | fvex 6919 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
| 4 | 2, 3 | opvtxfvi 29026 | . . . . 5 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) | 
| 5 | 4 | eqcomi 2746 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | 
| 6 | 2, 3 | opiedgfvi 29027 | . . . . 5 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) | 
| 7 | 6 | eqcomi 2746 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | 
| 8 | eqid 2737 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
| 9 | 5, 7, 8 | vtxdgfval 29485 | . . 3 ⊢ (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) | 
| 10 | 1, 9 | mp1i 13 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) | 
| 11 | df-ov 7434 | . . 3 ⊢ ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)) | 
| 13 | eqid 2737 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 14 | eqid 2737 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 15 | 13, 14, 8 | vtxdgfval 29485 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) | 
| 16 | 10, 12, 15 | 3eqtr4rd 2788 | 1 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {crab 3436 Vcvv 3480 {csn 4626 〈cop 4632 ↦ cmpt 5225 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 +𝑒 cxad 13152 ♯chash 14369 Vtxcvtx 29013 iEdgciedg 29014 VtxDegcvtxdg 29483 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-1st 8014 df-2nd 8015 df-vtx 29015 df-iedg 29016 df-vtxdg 29484 | 
| This theorem is referenced by: finsumvtxdg2size 29568 | 
| Copyright terms: Public domain | W3C validator |