MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgop Structured version   Visualization version   GIF version

Theorem vtxdgop 29506
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
vtxdgop (𝐺𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))

Proof of Theorem vtxdgop
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5484 . . 3 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
2 fvex 6933 . . . . . 6 (Vtx‘𝐺) ∈ V
3 fvex 6933 . . . . . 6 (iEdg‘𝐺) ∈ V
42, 3opvtxfvi 29044 . . . . 5 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺)
54eqcomi 2749 . . . 4 (Vtx‘𝐺) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
62, 3opiedgfvi 29045 . . . . 5 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺)
76eqcomi 2749 . . . 4 (iEdg‘𝐺) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
8 eqid 2740 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
95, 7, 8vtxdgfval 29503 . . 3 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
101, 9mp1i 13 . 2 (𝐺𝑊 → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
11 df-ov 7451 . . 3 ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
1211a1i 11 . 2 (𝐺𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩))
13 eqid 2740 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
14 eqid 2740 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
1513, 14, 8vtxdgfval 29503 . 2 (𝐺𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
1610, 12, 153eqtr4rd 2791 1 (𝐺𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  {csn 4648  cop 4654  cmpt 5249  dom cdm 5700  cfv 6573  (class class class)co 7448   +𝑒 cxad 13173  chash 14379  Vtxcvtx 29031  iEdgciedg 29032  VtxDegcvtxdg 29501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-1st 8030  df-2nd 8031  df-vtx 29033  df-iedg 29034  df-vtxdg 29502
This theorem is referenced by:  finsumvtxdg2size  29586
  Copyright terms: Public domain W3C validator