Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > vtxdgop | Structured version Visualization version GIF version |
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.) |
Ref | Expression |
---|---|
vtxdgop | ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5348 | . . 3 ⊢ 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V | |
2 | fvex 6730 | . . . . . 6 ⊢ (Vtx‘𝐺) ∈ V | |
3 | fvex 6730 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
4 | 2, 3 | opvtxfvi 27100 | . . . . 5 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
5 | 4 | eqcomi 2746 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
6 | 2, 3 | opiedgfvi 27101 | . . . . 5 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
7 | 6 | eqcomi 2746 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
8 | eqid 2737 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
9 | 5, 7, 8 | vtxdgfval 27555 | . . 3 ⊢ (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
10 | 1, 9 | mp1i 13 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
11 | df-ov 7216 | . . 3 ⊢ ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | |
12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)) |
13 | eqid 2737 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
14 | eqid 2737 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
15 | 13, 14, 8 | vtxdgfval 27555 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
16 | 10, 12, 15 | 3eqtr4rd 2788 | 1 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 {crab 3065 Vcvv 3408 {csn 4541 〈cop 4547 ↦ cmpt 5135 dom cdm 5551 ‘cfv 6380 (class class class)co 7213 +𝑒 cxad 12702 ♯chash 13896 Vtxcvtx 27087 iEdgciedg 27088 VtxDegcvtxdg 27553 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-1st 7761 df-2nd 7762 df-vtx 27089 df-iedg 27090 df-vtxdg 27554 |
This theorem is referenced by: finsumvtxdg2size 27638 |
Copyright terms: Public domain | W3C validator |