MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgop Structured version   Visualization version   GIF version

Theorem vtxdgop 28982
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
vtxdgop (𝐺𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))

Proof of Theorem vtxdgop
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5464 . . 3 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
2 fvex 6904 . . . . . 6 (Vtx‘𝐺) ∈ V
3 fvex 6904 . . . . . 6 (iEdg‘𝐺) ∈ V
42, 3opvtxfvi 28524 . . . . 5 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺)
54eqcomi 2741 . . . 4 (Vtx‘𝐺) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
62, 3opiedgfvi 28525 . . . . 5 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺)
76eqcomi 2741 . . . 4 (iEdg‘𝐺) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
8 eqid 2732 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
95, 7, 8vtxdgfval 28979 . . 3 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
101, 9mp1i 13 . 2 (𝐺𝑊 → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
11 df-ov 7414 . . 3 ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
1211a1i 11 . 2 (𝐺𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩))
13 eqid 2732 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
14 eqid 2732 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
1513, 14, 8vtxdgfval 28979 . 2 (𝐺𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
1610, 12, 153eqtr4rd 2783 1 (𝐺𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2106  {crab 3432  Vcvv 3474  {csn 4628  cop 4634  cmpt 5231  dom cdm 5676  cfv 6543  (class class class)co 7411   +𝑒 cxad 13094  chash 14294  Vtxcvtx 28511  iEdgciedg 28512  VtxDegcvtxdg 28977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-1st 7977  df-2nd 7978  df-vtx 28513  df-iedg 28514  df-vtxdg 28978
This theorem is referenced by:  finsumvtxdg2size  29062
  Copyright terms: Public domain W3C validator