MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  vtxdgop Structured version   Visualization version   GIF version

Theorem vtxdgop 27837
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.)
Assertion
Ref Expression
vtxdgop (𝐺𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))

Proof of Theorem vtxdgop
Dummy variables 𝑢 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5379 . . 3 ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V
2 fvex 6787 . . . . . 6 (Vtx‘𝐺) ∈ V
3 fvex 6787 . . . . . 6 (iEdg‘𝐺) ∈ V
42, 3opvtxfvi 27379 . . . . 5 (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺)
54eqcomi 2747 . . . 4 (Vtx‘𝐺) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
62, 3opiedgfvi 27380 . . . . 5 (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺)
76eqcomi 2747 . . . 4 (iEdg‘𝐺) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
8 eqid 2738 . . . 4 dom (iEdg‘𝐺) = dom (iEdg‘𝐺)
95, 7, 8vtxdgfval 27834 . . 3 (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
101, 9mp1i 13 . 2 (𝐺𝑊 → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
11 df-ov 7278 . . 3 ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)
1211a1i 11 . 2 (𝐺𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩))
13 eqid 2738 . . 3 (Vtx‘𝐺) = (Vtx‘𝐺)
14 eqid 2738 . . 3 (iEdg‘𝐺) = (iEdg‘𝐺)
1513, 14, 8vtxdgfval 27834 . 2 (𝐺𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}}))))
1610, 12, 153eqtr4rd 2789 1 (𝐺𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  {csn 4561  cop 4567  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275   +𝑒 cxad 12846  chash 14044  Vtxcvtx 27366  iEdgciedg 27367  VtxDegcvtxdg 27832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-1st 7831  df-2nd 7832  df-vtx 27368  df-iedg 27369  df-vtxdg 27833
This theorem is referenced by:  finsumvtxdg2size  27917
  Copyright terms: Public domain W3C validator