| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > vtxdgop | Structured version Visualization version GIF version | ||
| Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.) |
| Ref | Expression |
|---|---|
| vtxdgop | ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5427 | . . 3 ⊢ 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V | |
| 2 | fvex 6874 | . . . . . 6 ⊢ (Vtx‘𝐺) ∈ V | |
| 3 | fvex 6874 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
| 4 | 2, 3 | opvtxfvi 28943 | . . . . 5 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
| 5 | 4 | eqcomi 2739 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 6 | 2, 3 | opiedgfvi 28944 | . . . . 5 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
| 7 | 6 | eqcomi 2739 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
| 8 | eqid 2730 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
| 9 | 5, 7, 8 | vtxdgfval 29402 | . . 3 ⊢ (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
| 10 | 1, 9 | mp1i 13 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
| 11 | df-ov 7393 | . . 3 ⊢ ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | |
| 12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)) |
| 13 | eqid 2730 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
| 14 | eqid 2730 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 15 | 13, 14, 8 | vtxdgfval 29402 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
| 16 | 10, 12, 15 | 3eqtr4rd 2776 | 1 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3408 Vcvv 3450 {csn 4592 〈cop 4598 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 +𝑒 cxad 13077 ♯chash 14302 Vtxcvtx 28930 iEdgciedg 28931 VtxDegcvtxdg 29400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-1st 7971 df-2nd 7972 df-vtx 28932 df-iedg 28933 df-vtxdg 29401 |
| This theorem is referenced by: finsumvtxdg2size 29485 |
| Copyright terms: Public domain | W3C validator |