![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdgop | Structured version Visualization version GIF version |
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.) |
Ref | Expression |
---|---|
vtxdgop | ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5484 | . . 3 ⊢ 〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V | |
2 | fvex 6933 | . . . . . 6 ⊢ (Vtx‘𝐺) ∈ V | |
3 | fvex 6933 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
4 | 2, 3 | opvtxfvi 29044 | . . . . 5 ⊢ (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (Vtx‘𝐺) |
5 | 4 | eqcomi 2749 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
6 | 2, 3 | opiedgfvi 29045 | . . . . 5 ⊢ (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (iEdg‘𝐺) |
7 | 6 | eqcomi 2749 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) |
8 | eqid 2740 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
9 | 5, 7, 8 | vtxdgfval 29503 | . . 3 ⊢ (〈(Vtx‘𝐺), (iEdg‘𝐺)〉 ∈ V → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
10 | 1, 9 | mp1i 13 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
11 | df-ov 7451 | . . 3 ⊢ ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉) | |
12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘〈(Vtx‘𝐺), (iEdg‘𝐺)〉)) |
13 | eqid 2740 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
14 | eqid 2740 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
15 | 13, 14, 8 | vtxdgfval 29503 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
16 | 10, 12, 15 | 3eqtr4rd 2791 | 1 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {crab 3443 Vcvv 3488 {csn 4648 〈cop 4654 ↦ cmpt 5249 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 +𝑒 cxad 13173 ♯chash 14379 Vtxcvtx 29031 iEdgciedg 29032 VtxDegcvtxdg 29501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-1st 8030 df-2nd 8031 df-vtx 29033 df-iedg 29034 df-vtxdg 29502 |
This theorem is referenced by: finsumvtxdg2size 29586 |
Copyright terms: Public domain | W3C validator |