![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > vtxdgop | Structured version Visualization version GIF version |
Description: The vertex degree expressed as operation. (Contributed by AV, 12-Dec-2021.) |
Ref | Expression |
---|---|
vtxdgop | ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5464 | . . 3 ⊢ ⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V | |
2 | fvex 6904 | . . . . . 6 ⊢ (Vtx‘𝐺) ∈ V | |
3 | fvex 6904 | . . . . . 6 ⊢ (iEdg‘𝐺) ∈ V | |
4 | 2, 3 | opvtxfvi 28524 | . . . . 5 ⊢ (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (Vtx‘𝐺) |
5 | 4 | eqcomi 2741 | . . . 4 ⊢ (Vtx‘𝐺) = (Vtx‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) |
6 | 2, 3 | opiedgfvi 28525 | . . . . 5 ⊢ (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (iEdg‘𝐺) |
7 | 6 | eqcomi 2741 | . . . 4 ⊢ (iEdg‘𝐺) = (iEdg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) |
8 | eqid 2732 | . . . 4 ⊢ dom (iEdg‘𝐺) = dom (iEdg‘𝐺) | |
9 | 5, 7, 8 | vtxdgfval 28979 | . . 3 ⊢ (⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩ ∈ V → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
10 | 1, 9 | mp1i 13 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
11 | df-ov 7414 | . . 3 ⊢ ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩) | |
12 | 11 | a1i 11 | . 2 ⊢ (𝐺 ∈ 𝑊 → ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺)) = (VtxDeg‘⟨(Vtx‘𝐺), (iEdg‘𝐺)⟩)) |
13 | eqid 2732 | . . 3 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
14 | eqid 2732 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
15 | 13, 14, 8 | vtxdgfval 28979 | . 2 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = (𝑢 ∈ (Vtx‘𝐺) ↦ ((♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ 𝑢 ∈ ((iEdg‘𝐺)‘𝑥)}) +𝑒 (♯‘{𝑥 ∈ dom (iEdg‘𝐺) ∣ ((iEdg‘𝐺)‘𝑥) = {𝑢}})))) |
16 | 10, 12, 15 | 3eqtr4rd 2783 | 1 ⊢ (𝐺 ∈ 𝑊 → (VtxDeg‘𝐺) = ((Vtx‘𝐺)VtxDeg(iEdg‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 {crab 3432 Vcvv 3474 {csn 4628 ⟨cop 4634 ↦ cmpt 5231 dom cdm 5676 ‘cfv 6543 (class class class)co 7411 +𝑒 cxad 13094 ♯chash 14294 Vtxcvtx 28511 iEdgciedg 28512 VtxDegcvtxdg 28977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-1st 7977 df-2nd 7978 df-vtx 28513 df-iedg 28514 df-vtxdg 28978 |
This theorem is referenced by: finsumvtxdg2size 29062 |
Copyright terms: Public domain | W3C validator |