| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restcls2lem | Structured version Visualization version GIF version | ||
| Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
| restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
| Ref | Expression |
|---|---|
| restcls2lem | ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls2.5 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
| 2 | eqid 2733 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 2 | cldss 22945 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐾) → 𝑆 ⊆ ∪ 𝐾) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐾) |
| 5 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 6 | restcls2.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 7 | restcls2.2 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
| 8 | 6, 7 | sseqtrd 3967 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
| 9 | eqid 2733 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | restuni 23078 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 11 | 5, 8, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 12 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
| 13 | 12 | unieqd 4871 | . . 3 ⊢ (𝜑 → ∪ 𝐾 = ∪ (𝐽 ↾t 𝑌)) |
| 14 | 11, 13 | eqtr4d 2771 | . 2 ⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
| 15 | 4, 14 | sseqtrrd 3968 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 ∪ cuni 4858 ‘cfv 6486 (class class class)co 7352 ↾t crest 17326 Topctop 22809 Clsdccld 22932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-en 8876 df-fin 8879 df-fi 9302 df-rest 17328 df-topgen 17349 df-top 22810 df-topon 22827 df-bases 22862 df-cld 22935 |
| This theorem is referenced by: restcls2 49039 restclssep 49041 iscnrm3llem1 49074 iscnrm3llem2 49075 |
| Copyright terms: Public domain | W3C validator |