Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > restcls2lem | Structured version Visualization version GIF version |
Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
Ref | Expression |
---|---|
restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
Ref | Expression |
---|---|
restcls2lem | ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls2.5 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
2 | eqid 2737 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 2 | cldss 22293 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐾) → 𝑆 ⊆ ∪ 𝐾) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐾) |
5 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
6 | restcls2.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
7 | restcls2.2 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
8 | 6, 7 | sseqtrd 3982 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
9 | eqid 2737 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | restuni 22426 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
11 | 5, 8, 10 | syl2anc 585 | . . 3 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
12 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
13 | 12 | unieqd 4877 | . . 3 ⊢ (𝜑 → ∪ 𝐾 = ∪ (𝐽 ↾t 𝑌)) |
14 | 11, 13 | eqtr4d 2780 | . 2 ⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
15 | 4, 14 | sseqtrrd 3983 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ⊆ wss 3908 ∪ cuni 4863 ‘cfv 6491 (class class class)co 7349 ↾t crest 17236 Topctop 22155 Clsdccld 22280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5240 ax-sep 5254 ax-nul 5261 ax-pow 5318 ax-pr 5382 ax-un 7662 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3352 df-rab 3406 df-v 3445 df-sbc 3738 df-csb 3854 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-pss 3927 df-nul 4281 df-if 4485 df-pw 4560 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-int 4906 df-iun 4954 df-br 5104 df-opab 5166 df-mpt 5187 df-tr 5221 df-id 5528 df-eprel 5534 df-po 5542 df-so 5543 df-fr 5585 df-we 5587 df-xp 5636 df-rel 5637 df-cnv 5638 df-co 5639 df-dm 5640 df-rn 5641 df-res 5642 df-ima 5643 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6443 df-fun 6493 df-fn 6494 df-f 6495 df-f1 6496 df-fo 6497 df-f1o 6498 df-fv 6499 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7793 df-1st 7911 df-2nd 7912 df-en 8817 df-fin 8820 df-fi 9280 df-rest 17238 df-topgen 17259 df-top 22156 df-topon 22173 df-bases 22209 df-cld 22283 |
This theorem is referenced by: restcls2 46628 restclssep 46630 iscnrm3llem1 46664 iscnrm3llem2 46665 |
Copyright terms: Public domain | W3C validator |