Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restcls2lem Structured version   Visualization version   GIF version

Theorem restcls2lem 47632
Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restcls2lem (𝜑𝑆𝑌)

Proof of Theorem restcls2lem
StepHypRef Expression
1 restcls2.5 . . 3 (𝜑𝑆 ∈ (Clsd‘𝐾))
2 eqid 2730 . . . 4 𝐾 = 𝐾
32cldss 22753 . . 3 (𝑆 ∈ (Clsd‘𝐾) → 𝑆 𝐾)
41, 3syl 17 . 2 (𝜑𝑆 𝐾)
5 restcls2.1 . . . 4 (𝜑𝐽 ∈ Top)
6 restcls2.3 . . . . 5 (𝜑𝑌𝑋)
7 restcls2.2 . . . . 5 (𝜑𝑋 = 𝐽)
86, 7sseqtrd 4021 . . . 4 (𝜑𝑌 𝐽)
9 eqid 2730 . . . . 5 𝐽 = 𝐽
109restuni 22886 . . . 4 ((𝐽 ∈ Top ∧ 𝑌 𝐽) → 𝑌 = (𝐽t 𝑌))
115, 8, 10syl2anc 582 . . 3 (𝜑𝑌 = (𝐽t 𝑌))
12 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
1312unieqd 4921 . . 3 (𝜑 𝐾 = (𝐽t 𝑌))
1411, 13eqtr4d 2773 . 2 (𝜑𝑌 = 𝐾)
154, 14sseqtrrd 4022 1 (𝜑𝑆𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2104  wss 3947   cuni 4907  cfv 6542  (class class class)co 7411  t crest 17370  Topctop 22615  Clsdccld 22740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-en 8942  df-fin 8945  df-fi 9408  df-rest 17372  df-topgen 17393  df-top 22616  df-topon 22633  df-bases 22669  df-cld 22743
This theorem is referenced by:  restcls2  47633  restclssep  47635  iscnrm3llem1  47669  iscnrm3llem2  47670
  Copyright terms: Public domain W3C validator