Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > restcls2lem | Structured version Visualization version GIF version |
Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
Ref | Expression |
---|---|
restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
Ref | Expression |
---|---|
restcls2lem | ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls2.5 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
2 | eqid 2738 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 2 | cldss 22180 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐾) → 𝑆 ⊆ ∪ 𝐾) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐾) |
5 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
6 | restcls2.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
7 | restcls2.2 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
8 | 6, 7 | sseqtrd 3961 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
9 | eqid 2738 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | restuni 22313 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
11 | 5, 8, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
12 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
13 | 12 | unieqd 4853 | . . 3 ⊢ (𝜑 → ∪ 𝐾 = ∪ (𝐽 ↾t 𝑌)) |
14 | 11, 13 | eqtr4d 2781 | . 2 ⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
15 | 4, 14 | sseqtrrd 3962 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 (class class class)co 7275 ↾t crest 17131 Topctop 22042 Clsdccld 22167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-en 8734 df-fin 8737 df-fi 9170 df-rest 17133 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cld 22170 |
This theorem is referenced by: restcls2 46207 restclssep 46209 iscnrm3llem1 46243 iscnrm3llem2 46244 |
Copyright terms: Public domain | W3C validator |