| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > restcls2lem | Structured version Visualization version GIF version | ||
| Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
| Ref | Expression |
|---|---|
| restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
| restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
| restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
| restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
| Ref | Expression |
|---|---|
| restcls2lem | ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcls2.5 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
| 2 | eqid 2730 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
| 3 | 2 | cldss 22922 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐾) → 𝑆 ⊆ ∪ 𝐾) |
| 4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐾) |
| 5 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 6 | restcls2.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
| 7 | restcls2.2 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
| 8 | 6, 7 | sseqtrd 3985 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
| 9 | eqid 2730 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 10 | 9 | restuni 23055 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 11 | 5, 8, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
| 12 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
| 13 | 12 | unieqd 4886 | . . 3 ⊢ (𝜑 → ∪ 𝐾 = ∪ (𝐽 ↾t 𝑌)) |
| 14 | 11, 13 | eqtr4d 2768 | . 2 ⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
| 15 | 4, 14 | sseqtrrd 3986 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ∪ cuni 4873 ‘cfv 6513 (class class class)co 7389 ↾t crest 17389 Topctop 22786 Clsdccld 22909 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-en 8921 df-fin 8924 df-fi 9368 df-rest 17391 df-topgen 17412 df-top 22787 df-topon 22804 df-bases 22839 df-cld 22912 |
| This theorem is referenced by: restcls2 48892 restclssep 48894 iscnrm3llem1 48927 iscnrm3llem2 48928 |
| Copyright terms: Public domain | W3C validator |