![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > restcls2lem | Structured version Visualization version GIF version |
Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.) |
Ref | Expression |
---|---|
restcls2.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
restcls2.2 | ⊢ (𝜑 → 𝑋 = ∪ 𝐽) |
restcls2.3 | ⊢ (𝜑 → 𝑌 ⊆ 𝑋) |
restcls2.4 | ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) |
restcls2.5 | ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) |
Ref | Expression |
---|---|
restcls2lem | ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restcls2.5 | . . 3 ⊢ (𝜑 → 𝑆 ∈ (Clsd‘𝐾)) | |
2 | eqid 2725 | . . . 4 ⊢ ∪ 𝐾 = ∪ 𝐾 | |
3 | 2 | cldss 22963 | . . 3 ⊢ (𝑆 ∈ (Clsd‘𝐾) → 𝑆 ⊆ ∪ 𝐾) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 ⊆ ∪ 𝐾) |
5 | restcls2.1 | . . . 4 ⊢ (𝜑 → 𝐽 ∈ Top) | |
6 | restcls2.3 | . . . . 5 ⊢ (𝜑 → 𝑌 ⊆ 𝑋) | |
7 | restcls2.2 | . . . . 5 ⊢ (𝜑 → 𝑋 = ∪ 𝐽) | |
8 | 6, 7 | sseqtrd 4018 | . . . 4 ⊢ (𝜑 → 𝑌 ⊆ ∪ 𝐽) |
9 | eqid 2725 | . . . . 5 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
10 | 9 | restuni 23096 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑌 ⊆ ∪ 𝐽) → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
11 | 5, 8, 10 | syl2anc 582 | . . 3 ⊢ (𝜑 → 𝑌 = ∪ (𝐽 ↾t 𝑌)) |
12 | restcls2.4 | . . . 4 ⊢ (𝜑 → 𝐾 = (𝐽 ↾t 𝑌)) | |
13 | 12 | unieqd 4921 | . . 3 ⊢ (𝜑 → ∪ 𝐾 = ∪ (𝐽 ↾t 𝑌)) |
14 | 11, 13 | eqtr4d 2768 | . 2 ⊢ (𝜑 → 𝑌 = ∪ 𝐾) |
15 | 4, 14 | sseqtrrd 4019 | 1 ⊢ (𝜑 → 𝑆 ⊆ 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ⊆ wss 3945 ∪ cuni 4908 ‘cfv 6547 (class class class)co 7417 ↾t crest 17401 Topctop 22825 Clsdccld 22950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-en 8963 df-fin 8966 df-fi 9434 df-rest 17403 df-topgen 17424 df-top 22826 df-topon 22843 df-bases 22879 df-cld 22953 |
This theorem is referenced by: restcls2 48044 restclssep 48046 iscnrm3llem1 48080 iscnrm3llem2 48081 |
Copyright terms: Public domain | W3C validator |