Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restcls2lem Structured version   Visualization version   GIF version

Theorem restcls2lem 47854
Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restcls2lem (𝜑𝑆𝑌)

Proof of Theorem restcls2lem
StepHypRef Expression
1 restcls2.5 . . 3 (𝜑𝑆 ∈ (Clsd‘𝐾))
2 eqid 2727 . . . 4 𝐾 = 𝐾
32cldss 22920 . . 3 (𝑆 ∈ (Clsd‘𝐾) → 𝑆 𝐾)
41, 3syl 17 . 2 (𝜑𝑆 𝐾)
5 restcls2.1 . . . 4 (𝜑𝐽 ∈ Top)
6 restcls2.3 . . . . 5 (𝜑𝑌𝑋)
7 restcls2.2 . . . . 5 (𝜑𝑋 = 𝐽)
86, 7sseqtrd 4018 . . . 4 (𝜑𝑌 𝐽)
9 eqid 2727 . . . . 5 𝐽 = 𝐽
109restuni 23053 . . . 4 ((𝐽 ∈ Top ∧ 𝑌 𝐽) → 𝑌 = (𝐽t 𝑌))
115, 8, 10syl2anc 583 . . 3 (𝜑𝑌 = (𝐽t 𝑌))
12 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
1312unieqd 4916 . . 3 (𝜑 𝐾 = (𝐽t 𝑌))
1411, 13eqtr4d 2770 . 2 (𝜑𝑌 = 𝐾)
154, 14sseqtrrd 4019 1 (𝜑𝑆𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099  wss 3944   cuni 4903  cfv 6542  (class class class)co 7414  t crest 17393  Topctop 22782  Clsdccld 22907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-en 8956  df-fin 8959  df-fi 9426  df-rest 17395  df-topgen 17416  df-top 22783  df-topon 22800  df-bases 22836  df-cld 22910
This theorem is referenced by:  restcls2  47855  restclssep  47857  iscnrm3llem1  47891  iscnrm3llem2  47892
  Copyright terms: Public domain W3C validator