Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  restcls2lem Structured version   Visualization version   GIF version

Theorem restcls2lem 48043
Description: A closed set in a subspace topology is a subset of the subspace. (Contributed by Zhi Wang, 2-Sep-2024.)
Hypotheses
Ref Expression
restcls2.1 (𝜑𝐽 ∈ Top)
restcls2.2 (𝜑𝑋 = 𝐽)
restcls2.3 (𝜑𝑌𝑋)
restcls2.4 (𝜑𝐾 = (𝐽t 𝑌))
restcls2.5 (𝜑𝑆 ∈ (Clsd‘𝐾))
Assertion
Ref Expression
restcls2lem (𝜑𝑆𝑌)

Proof of Theorem restcls2lem
StepHypRef Expression
1 restcls2.5 . . 3 (𝜑𝑆 ∈ (Clsd‘𝐾))
2 eqid 2725 . . . 4 𝐾 = 𝐾
32cldss 22963 . . 3 (𝑆 ∈ (Clsd‘𝐾) → 𝑆 𝐾)
41, 3syl 17 . 2 (𝜑𝑆 𝐾)
5 restcls2.1 . . . 4 (𝜑𝐽 ∈ Top)
6 restcls2.3 . . . . 5 (𝜑𝑌𝑋)
7 restcls2.2 . . . . 5 (𝜑𝑋 = 𝐽)
86, 7sseqtrd 4018 . . . 4 (𝜑𝑌 𝐽)
9 eqid 2725 . . . . 5 𝐽 = 𝐽
109restuni 23096 . . . 4 ((𝐽 ∈ Top ∧ 𝑌 𝐽) → 𝑌 = (𝐽t 𝑌))
115, 8, 10syl2anc 582 . . 3 (𝜑𝑌 = (𝐽t 𝑌))
12 restcls2.4 . . . 4 (𝜑𝐾 = (𝐽t 𝑌))
1312unieqd 4921 . . 3 (𝜑 𝐾 = (𝐽t 𝑌))
1411, 13eqtr4d 2768 . 2 (𝜑𝑌 = 𝐾)
154, 14sseqtrrd 4019 1 (𝜑𝑆𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wss 3945   cuni 4908  cfv 6547  (class class class)co 7417  t crest 17401  Topctop 22825  Clsdccld 22950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-en 8963  df-fin 8966  df-fi 9434  df-rest 17403  df-topgen 17424  df-top 22826  df-topon 22843  df-bases 22879  df-cld 22953
This theorem is referenced by:  restcls2  48044  restclssep  48046  iscnrm3llem1  48080  iscnrm3llem2  48081
  Copyright terms: Public domain W3C validator