Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opnneieqv Structured version   Visualization version   GIF version

Theorem opnneieqv 49035
Description: The equivalence between neighborhood and open neighborhood. See opnneieqvv 49036 for different dummy variables. (Contributed by Zhi Wang, 31-Aug-2024.)
Hypotheses
Ref Expression
opnneir.1 (𝜑𝐽 ∈ Top)
opnneilv.2 ((𝜑𝑦𝑥) → (𝜓𝜒))
opnneil.3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
Assertion
Ref Expression
opnneieqv (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥𝐽 (𝑆𝑥𝜓)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑥,𝑆,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opnneieqv
StepHypRef Expression
1 opnneir.1 . . 3 (𝜑𝐽 ∈ Top)
2 opnneilv.2 . . 3 ((𝜑𝑦𝑥) → (𝜓𝜒))
3 opnneil.3 . . 3 ((𝜑𝑥 = 𝑦) → (𝜓𝜒))
41, 2, 3opnneil 49034 . 2 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 → ∃𝑥𝐽 (𝑆𝑥𝜓)))
51opnneir 49031 . 2 (𝜑 → (∃𝑥𝐽 (𝑆𝑥𝜓) → ∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓))
64, 5impbid 212 1 (𝜑 → (∃𝑥 ∈ ((nei‘𝐽)‘𝑆)𝜓 ↔ ∃𝑥𝐽 (𝑆𝑥𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2113  wrex 3057  wss 3898  cfv 6486  Topctop 22809  neicnei 23013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-top 22810  df-nei 23014
This theorem is referenced by:  opnneieqvv  49036  sepnsepolem2  49047  sepnsepo  49048
  Copyright terms: Public domain W3C validator