![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcbasOLD | Structured version Visualization version GIF version |
Description: Obsolete version of oppcbas 17663 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
oppcbasOLD | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | baseid 17147 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
3 | 1re 11214 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
4 | 1nn 12223 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
5 | 4nn0 12491 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
6 | 1nn0 12488 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12816 | . . . . . . . . 9 ⊢ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12715 | . . . . . . . 8 ⊢ 1 < ;14 |
9 | 3, 8 | ltneii 11327 | . . . . . . 7 ⊢ 1 ≠ ;14 |
10 | basendx 17153 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
11 | homndx 17356 | . . . . . . . 8 ⊢ (Hom ‘ndx) = ;14 | |
12 | 10, 11 | neeq12i 3008 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
13 | 9, 12 | mpbir 230 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
14 | 2, 13 | setsnid 17142 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) |
15 | 5nn 12298 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ | |
16 | 4lt5 12389 | . . . . . . . . . 10 ⊢ 4 < 5 | |
17 | 6, 5, 15, 16 | declt 12705 | . . . . . . . . 9 ⊢ ;14 < ;15 |
18 | 4nn 12295 | . . . . . . . . . . . 12 ⊢ 4 ∈ ℕ | |
19 | 6, 18 | decnncl 12697 | . . . . . . . . . . 11 ⊢ ;14 ∈ ℕ |
20 | 19 | nnrei 12221 | . . . . . . . . . 10 ⊢ ;14 ∈ ℝ |
21 | 6, 15 | decnncl 12697 | . . . . . . . . . . 11 ⊢ ;15 ∈ ℕ |
22 | 21 | nnrei 12221 | . . . . . . . . . 10 ⊢ ;15 ∈ ℝ |
23 | 3, 20, 22 | lttri 11340 | . . . . . . . . 9 ⊢ ((1 < ;14 ∧ ;14 < ;15) → 1 < ;15) |
24 | 8, 17, 23 | mp2an 691 | . . . . . . . 8 ⊢ 1 < ;15 |
25 | 3, 24 | ltneii 11327 | . . . . . . 7 ⊢ 1 ≠ ;15 |
26 | ccondx 17358 | . . . . . . . 8 ⊢ (comp‘ndx) = ;15 | |
27 | 10, 26 | neeq12i 3008 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ ;15) |
28 | 25, 27 | mpbir 230 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
29 | 2, 28 | setsnid 17142 | . . . . 5 ⊢ (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
30 | 14, 29 | eqtri 2761 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
31 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
32 | eqid 2733 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
33 | eqid 2733 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
34 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
35 | 31, 32, 33, 34 | oppcval 17657 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
36 | 35 | fveq2d 6896 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩))) |
37 | 30, 36 | eqtr4id 2792 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
38 | base0 17149 | . . . 4 ⊢ ∅ = (Base‘∅) | |
39 | fvprc 6884 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
40 | fvprc 6884 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
41 | 34, 40 | eqtrid 2785 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
42 | 41 | fveq2d 6896 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅)) |
43 | 38, 39, 42 | 3eqtr4a 2799 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
44 | 37, 43 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
45 | 1, 44 | eqtri 2761 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ∅c0 4323 ⟨cop 4635 class class class wbr 5149 × cxp 5675 ‘cfv 6544 (class class class)co 7409 ∈ cmpo 7411 1st c1st 7973 2nd c2nd 7974 tpos ctpos 8210 1c1 11111 < clt 11248 4c4 12269 5c5 12270 ;cdc 12677 sSet csts 17096 ndxcnx 17126 Basecbs 17144 Hom chom 17208 compcco 17209 oppCatcoppc 17655 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-2nd 7976 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-dec 12678 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-hom 17221 df-cco 17222 df-oppc 17656 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |