![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcbasOLD | Structured version Visualization version GIF version |
Description: Obsolete version of oppcbas 17672 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
oppcbasOLD | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | baseid 17156 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
3 | 1re 11218 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
4 | 1nn 12227 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
5 | 4nn0 12495 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
6 | 1nn0 12492 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12820 | . . . . . . . . 9 ⊢ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12719 | . . . . . . . 8 ⊢ 1 < ;14 |
9 | 3, 8 | ltneii 11331 | . . . . . . 7 ⊢ 1 ≠ ;14 |
10 | basendx 17162 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
11 | homndx 17365 | . . . . . . . 8 ⊢ (Hom ‘ndx) = ;14 | |
12 | 10, 11 | neeq12i 3001 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
13 | 9, 12 | mpbir 230 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
14 | 2, 13 | setsnid 17151 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) |
15 | 5nn 12302 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ | |
16 | 4lt5 12393 | . . . . . . . . . 10 ⊢ 4 < 5 | |
17 | 6, 5, 15, 16 | declt 12709 | . . . . . . . . 9 ⊢ ;14 < ;15 |
18 | 4nn 12299 | . . . . . . . . . . . 12 ⊢ 4 ∈ ℕ | |
19 | 6, 18 | decnncl 12701 | . . . . . . . . . . 11 ⊢ ;14 ∈ ℕ |
20 | 19 | nnrei 12225 | . . . . . . . . . 10 ⊢ ;14 ∈ ℝ |
21 | 6, 15 | decnncl 12701 | . . . . . . . . . . 11 ⊢ ;15 ∈ ℕ |
22 | 21 | nnrei 12225 | . . . . . . . . . 10 ⊢ ;15 ∈ ℝ |
23 | 3, 20, 22 | lttri 11344 | . . . . . . . . 9 ⊢ ((1 < ;14 ∧ ;14 < ;15) → 1 < ;15) |
24 | 8, 17, 23 | mp2an 689 | . . . . . . . 8 ⊢ 1 < ;15 |
25 | 3, 24 | ltneii 11331 | . . . . . . 7 ⊢ 1 ≠ ;15 |
26 | ccondx 17367 | . . . . . . . 8 ⊢ (comp‘ndx) = ;15 | |
27 | 10, 26 | neeq12i 3001 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ ;15) |
28 | 25, 27 | mpbir 230 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
29 | 2, 28 | setsnid 17151 | . . . . 5 ⊢ (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
30 | 14, 29 | eqtri 2754 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
31 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
32 | eqid 2726 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
33 | eqid 2726 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
34 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
35 | 31, 32, 33, 34 | oppcval 17666 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
36 | 35 | fveq2d 6889 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩))) |
37 | 30, 36 | eqtr4id 2785 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
38 | base0 17158 | . . . 4 ⊢ ∅ = (Base‘∅) | |
39 | fvprc 6877 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
40 | fvprc 6877 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
41 | 34, 40 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
42 | 41 | fveq2d 6889 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅)) |
43 | 38, 39, 42 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
44 | 37, 43 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
45 | 1, 44 | eqtri 2754 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 ≠ wne 2934 Vcvv 3468 ∅c0 4317 ⟨cop 4629 class class class wbr 5141 × cxp 5667 ‘cfv 6537 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7972 2nd c2nd 7973 tpos ctpos 8211 1c1 11113 < clt 11252 4c4 12273 5c5 12274 ;cdc 12681 sSet csts 17105 ndxcnx 17135 Basecbs 17153 Hom chom 17217 compcco 17218 oppCatcoppc 17664 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-tpos 8212 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-hom 17230 df-cco 17231 df-oppc 17665 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |