MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcbasOLD Structured version   Visualization version   GIF version

Theorem oppcbasOLD 17321
Description: Obsolete version of oppcbas 17320 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
oppcbas.2 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
oppcbasOLD 𝐵 = (Base‘𝑂)

Proof of Theorem oppcbasOLD
Dummy variables 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.2 . 2 𝐵 = (Base‘𝐶)
2 baseid 16818 . . . . . 6 Base = Slot (Base‘ndx)
3 1re 10881 . . . . . . . 8 1 ∈ ℝ
4 1nn 11889 . . . . . . . . 9 1 ∈ ℕ
5 4nn0 12157 . . . . . . . . 9 4 ∈ ℕ0
6 1nn0 12154 . . . . . . . . 9 1 ∈ ℕ0
7 1lt10 12480 . . . . . . . . 9 1 < 10
84, 5, 6, 7declti 12379 . . . . . . . 8 1 < 14
93, 8ltneii 10993 . . . . . . 7 1 ≠ 14
10 basendx 16824 . . . . . . . 8 (Base‘ndx) = 1
11 homndx 17015 . . . . . . . 8 (Hom ‘ndx) = 14
1210, 11neeq12i 3010 . . . . . . 7 ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ 14)
139, 12mpbir 234 . . . . . 6 (Base‘ndx) ≠ (Hom ‘ndx)
142, 13setsnid 16813 . . . . 5 (Base‘𝐶) = (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩))
15 5nn 11964 . . . . . . . . . 10 5 ∈ ℕ
16 4lt5 12055 . . . . . . . . . 10 4 < 5
176, 5, 15, 16declt 12369 . . . . . . . . 9 14 < 15
18 4nn 11961 . . . . . . . . . . . 12 4 ∈ ℕ
196, 18decnncl 12361 . . . . . . . . . . 11 14 ∈ ℕ
2019nnrei 11887 . . . . . . . . . 10 14 ∈ ℝ
216, 15decnncl 12361 . . . . . . . . . . 11 15 ∈ ℕ
2221nnrei 11887 . . . . . . . . . 10 15 ∈ ℝ
233, 20, 22lttri 11006 . . . . . . . . 9 ((1 < 14 ∧ 14 < 15) → 1 < 15)
248, 17, 23mp2an 692 . . . . . . . 8 1 < 15
253, 24ltneii 10993 . . . . . . 7 1 ≠ 15
26 ccondx 17017 . . . . . . . 8 (comp‘ndx) = 15
2710, 26neeq12i 3010 . . . . . . 7 ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ 15)
2825, 27mpbir 234 . . . . . 6 (Base‘ndx) ≠ (comp‘ndx)
292, 28setsnid 16813 . . . . 5 (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
3014, 29eqtri 2767 . . . 4 (Base‘𝐶) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
31 eqid 2739 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
32 eqid 2739 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
33 eqid 2739 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
34 oppcbas.1 . . . . . 6 𝑂 = (oppCat‘𝐶)
3531, 32, 33, 34oppcval 17314 . . . . 5 (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
3635fveq2d 6757 . . . 4 (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩)))
3730, 36eqtr4id 2799 . . 3 (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂))
38 base0 16820 . . . 4 ∅ = (Base‘∅)
39 fvprc 6745 . . . 4 𝐶 ∈ V → (Base‘𝐶) = ∅)
40 fvprc 6745 . . . . . 6 𝐶 ∈ V → (oppCat‘𝐶) = ∅)
4134, 40eqtrid 2791 . . . . 5 𝐶 ∈ V → 𝑂 = ∅)
4241fveq2d 6757 . . . 4 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅))
4338, 39, 423eqtr4a 2806 . . 3 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂))
4437, 43pm2.61i 185 . 2 (Base‘𝐶) = (Base‘𝑂)
451, 44eqtri 2767 1 𝐵 = (Base‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1543  wcel 2112  wne 2943  Vcvv 3423  c0 4254  cop 4564   class class class wbr 5070   × cxp 5577  cfv 6415  (class class class)co 7252  cmpo 7254  1st c1st 7799  2nd c2nd 7800  tpos ctpos 8009  1c1 10778   < clt 10915  4c4 11935  5c5 11936  cdc 12341   sSet csts 16767  ndxcnx 16797  Basecbs 16815  Hom chom 16874  compcco 16875  oppCatcoppc 17312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-tpos 8010  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-er 8433  df-en 8669  df-dom 8670  df-sdom 8671  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-7 11946  df-8 11947  df-9 11948  df-n0 12139  df-z 12225  df-dec 12342  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-hom 16887  df-cco 16888  df-oppc 17313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator