MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcbasOLD Structured version   Visualization version   GIF version

Theorem oppcbasOLD 17697
Description: Obsolete version of oppcbas 17696 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
oppcbas.2 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
oppcbasOLD 𝐵 = (Base‘𝑂)

Proof of Theorem oppcbasOLD
Dummy variables 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.2 . 2 𝐵 = (Base‘𝐶)
2 baseid 17180 . . . . . 6 Base = Slot (Base‘ndx)
3 1re 11242 . . . . . . . 8 1 ∈ ℝ
4 1nn 12251 . . . . . . . . 9 1 ∈ ℕ
5 4nn0 12519 . . . . . . . . 9 4 ∈ ℕ0
6 1nn0 12516 . . . . . . . . 9 1 ∈ ℕ0
7 1lt10 12844 . . . . . . . . 9 1 < 10
84, 5, 6, 7declti 12743 . . . . . . . 8 1 < 14
93, 8ltneii 11355 . . . . . . 7 1 ≠ 14
10 basendx 17186 . . . . . . . 8 (Base‘ndx) = 1
11 homndx 17389 . . . . . . . 8 (Hom ‘ndx) = 14
1210, 11neeq12i 2997 . . . . . . 7 ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ 14)
139, 12mpbir 230 . . . . . 6 (Base‘ndx) ≠ (Hom ‘ndx)
142, 13setsnid 17175 . . . . 5 (Base‘𝐶) = (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩))
15 5nn 12326 . . . . . . . . . 10 5 ∈ ℕ
16 4lt5 12417 . . . . . . . . . 10 4 < 5
176, 5, 15, 16declt 12733 . . . . . . . . 9 14 < 15
18 4nn 12323 . . . . . . . . . . . 12 4 ∈ ℕ
196, 18decnncl 12725 . . . . . . . . . . 11 14 ∈ ℕ
2019nnrei 12249 . . . . . . . . . 10 14 ∈ ℝ
216, 15decnncl 12725 . . . . . . . . . . 11 15 ∈ ℕ
2221nnrei 12249 . . . . . . . . . 10 15 ∈ ℝ
233, 20, 22lttri 11368 . . . . . . . . 9 ((1 < 14 ∧ 14 < 15) → 1 < 15)
248, 17, 23mp2an 690 . . . . . . . 8 1 < 15
253, 24ltneii 11355 . . . . . . 7 1 ≠ 15
26 ccondx 17391 . . . . . . . 8 (comp‘ndx) = 15
2710, 26neeq12i 2997 . . . . . . 7 ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ 15)
2825, 27mpbir 230 . . . . . 6 (Base‘ndx) ≠ (comp‘ndx)
292, 28setsnid 17175 . . . . 5 (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
3014, 29eqtri 2753 . . . 4 (Base‘𝐶) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
31 eqid 2725 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
32 eqid 2725 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
33 eqid 2725 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
34 oppcbas.1 . . . . . 6 𝑂 = (oppCat‘𝐶)
3531, 32, 33, 34oppcval 17690 . . . . 5 (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
3635fveq2d 6895 . . . 4 (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩)))
3730, 36eqtr4id 2784 . . 3 (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂))
38 base0 17182 . . . 4 ∅ = (Base‘∅)
39 fvprc 6883 . . . 4 𝐶 ∈ V → (Base‘𝐶) = ∅)
40 fvprc 6883 . . . . . 6 𝐶 ∈ V → (oppCat‘𝐶) = ∅)
4134, 40eqtrid 2777 . . . . 5 𝐶 ∈ V → 𝑂 = ∅)
4241fveq2d 6895 . . . 4 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅))
4338, 39, 423eqtr4a 2791 . . 3 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂))
4437, 43pm2.61i 182 . 2 (Base‘𝐶) = (Base‘𝑂)
451, 44eqtri 2753 1 𝐵 = (Base‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1533  wcel 2098  wne 2930  Vcvv 3463  c0 4318  cop 4630   class class class wbr 5143   × cxp 5670  cfv 6542  (class class class)co 7415  cmpo 7417  1st c1st 7987  2nd c2nd 7988  tpos ctpos 8227  1c1 11137   < clt 11276  4c4 12297  5c5 12298  cdc 12705   sSet csts 17129  ndxcnx 17159  Basecbs 17177  Hom chom 17241  compcco 17242  oppCatcoppc 17688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7737  ax-cnex 11192  ax-resscn 11193  ax-1cn 11194  ax-icn 11195  ax-addcl 11196  ax-addrcl 11197  ax-mulcl 11198  ax-mulrcl 11199  ax-mulcom 11200  ax-addass 11201  ax-mulass 11202  ax-distr 11203  ax-i2m1 11204  ax-1ne0 11205  ax-1rid 11206  ax-rnegex 11207  ax-rrecex 11208  ax-cnre 11209  ax-pre-lttri 11210  ax-pre-lttrn 11211  ax-pre-ltadd 11212  ax-pre-mulgt0 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3960  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7418  df-oprab 7419  df-mpo 7420  df-om 7868  df-2nd 7990  df-tpos 8228  df-frecs 8283  df-wrecs 8314  df-recs 8388  df-rdg 8427  df-er 8721  df-en 8961  df-dom 8962  df-sdom 8963  df-pnf 11278  df-mnf 11279  df-xr 11280  df-ltxr 11281  df-le 11282  df-sub 11474  df-neg 11475  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12501  df-z 12587  df-dec 12706  df-sets 17130  df-slot 17148  df-ndx 17160  df-base 17178  df-hom 17254  df-cco 17255  df-oppc 17689
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator