MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppcbasOLD Structured version   Visualization version   GIF version

Theorem oppcbasOLD 17664
Description: Obsolete version of oppcbas 17663 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
oppcbas.1 𝑂 = (oppCat‘𝐶)
oppcbas.2 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
oppcbasOLD 𝐵 = (Base‘𝑂)

Proof of Theorem oppcbasOLD
Dummy variables 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oppcbas.2 . 2 𝐵 = (Base‘𝐶)
2 baseid 17147 . . . . . 6 Base = Slot (Base‘ndx)
3 1re 11214 . . . . . . . 8 1 ∈ ℝ
4 1nn 12223 . . . . . . . . 9 1 ∈ ℕ
5 4nn0 12491 . . . . . . . . 9 4 ∈ ℕ0
6 1nn0 12488 . . . . . . . . 9 1 ∈ ℕ0
7 1lt10 12816 . . . . . . . . 9 1 < 10
84, 5, 6, 7declti 12715 . . . . . . . 8 1 < 14
93, 8ltneii 11327 . . . . . . 7 1 ≠ 14
10 basendx 17153 . . . . . . . 8 (Base‘ndx) = 1
11 homndx 17356 . . . . . . . 8 (Hom ‘ndx) = 14
1210, 11neeq12i 3008 . . . . . . 7 ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ 14)
139, 12mpbir 230 . . . . . 6 (Base‘ndx) ≠ (Hom ‘ndx)
142, 13setsnid 17142 . . . . 5 (Base‘𝐶) = (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩))
15 5nn 12298 . . . . . . . . . 10 5 ∈ ℕ
16 4lt5 12389 . . . . . . . . . 10 4 < 5
176, 5, 15, 16declt 12705 . . . . . . . . 9 14 < 15
18 4nn 12295 . . . . . . . . . . . 12 4 ∈ ℕ
196, 18decnncl 12697 . . . . . . . . . . 11 14 ∈ ℕ
2019nnrei 12221 . . . . . . . . . 10 14 ∈ ℝ
216, 15decnncl 12697 . . . . . . . . . . 11 15 ∈ ℕ
2221nnrei 12221 . . . . . . . . . 10 15 ∈ ℝ
233, 20, 22lttri 11340 . . . . . . . . 9 ((1 < 14 ∧ 14 < 15) → 1 < 15)
248, 17, 23mp2an 691 . . . . . . . 8 1 < 15
253, 24ltneii 11327 . . . . . . 7 1 ≠ 15
26 ccondx 17358 . . . . . . . 8 (comp‘ndx) = 15
2710, 26neeq12i 3008 . . . . . . 7 ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ 15)
2825, 27mpbir 230 . . . . . 6 (Base‘ndx) ≠ (comp‘ndx)
292, 28setsnid 17142 . . . . 5 (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
3014, 29eqtri 2761 . . . 4 (Base‘𝐶) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
31 eqid 2733 . . . . . 6 (Base‘𝐶) = (Base‘𝐶)
32 eqid 2733 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
33 eqid 2733 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
34 oppcbas.1 . . . . . 6 𝑂 = (oppCat‘𝐶)
3531, 32, 33, 34oppcval 17657 . . . . 5 (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩))
3635fveq2d 6896 . . . 4 (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd𝑢)⟩(comp‘𝐶)(1st𝑢)))⟩)))
3730, 36eqtr4id 2792 . . 3 (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂))
38 base0 17149 . . . 4 ∅ = (Base‘∅)
39 fvprc 6884 . . . 4 𝐶 ∈ V → (Base‘𝐶) = ∅)
40 fvprc 6884 . . . . . 6 𝐶 ∈ V → (oppCat‘𝐶) = ∅)
4134, 40eqtrid 2785 . . . . 5 𝐶 ∈ V → 𝑂 = ∅)
4241fveq2d 6896 . . . 4 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅))
4338, 39, 423eqtr4a 2799 . . 3 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂))
4437, 43pm2.61i 182 . 2 (Base‘𝐶) = (Base‘𝑂)
451, 44eqtri 2761 1 𝐵 = (Base‘𝑂)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  c0 4323  cop 4635   class class class wbr 5149   × cxp 5675  cfv 6544  (class class class)co 7409  cmpo 7411  1st c1st 7973  2nd c2nd 7974  tpos ctpos 8210  1c1 11111   < clt 11248  4c4 12269  5c5 12270  cdc 12677   sSet csts 17096  ndxcnx 17126  Basecbs 17144  Hom chom 17208  compcco 17209  oppCatcoppc 17655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-tpos 8211  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-hom 17221  df-cco 17222  df-oppc 17656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator