![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcbasOLD | Structured version Visualization version GIF version |
Description: Obsolete version of oppcbas 17725 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
oppcbasOLD | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | baseid 17209 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
3 | 1re 11253 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
4 | 1nn 12267 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
5 | 4nn0 12535 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
6 | 1nn0 12532 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12860 | . . . . . . . . 9 ⊢ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12759 | . . . . . . . 8 ⊢ 1 < ;14 |
9 | 3, 8 | ltneii 11366 | . . . . . . 7 ⊢ 1 ≠ ;14 |
10 | basendx 17215 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
11 | homndx 17418 | . . . . . . . 8 ⊢ (Hom ‘ndx) = ;14 | |
12 | 10, 11 | neeq12i 2997 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
13 | 9, 12 | mpbir 230 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
14 | 2, 13 | setsnid 17204 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) |
15 | 5nn 12342 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ | |
16 | 4lt5 12433 | . . . . . . . . . 10 ⊢ 4 < 5 | |
17 | 6, 5, 15, 16 | declt 12749 | . . . . . . . . 9 ⊢ ;14 < ;15 |
18 | 4nn 12339 | . . . . . . . . . . . 12 ⊢ 4 ∈ ℕ | |
19 | 6, 18 | decnncl 12741 | . . . . . . . . . . 11 ⊢ ;14 ∈ ℕ |
20 | 19 | nnrei 12265 | . . . . . . . . . 10 ⊢ ;14 ∈ ℝ |
21 | 6, 15 | decnncl 12741 | . . . . . . . . . . 11 ⊢ ;15 ∈ ℕ |
22 | 21 | nnrei 12265 | . . . . . . . . . 10 ⊢ ;15 ∈ ℝ |
23 | 3, 20, 22 | lttri 11379 | . . . . . . . . 9 ⊢ ((1 < ;14 ∧ ;14 < ;15) → 1 < ;15) |
24 | 8, 17, 23 | mp2an 690 | . . . . . . . 8 ⊢ 1 < ;15 |
25 | 3, 24 | ltneii 11366 | . . . . . . 7 ⊢ 1 ≠ ;15 |
26 | ccondx 17420 | . . . . . . . 8 ⊢ (comp‘ndx) = ;15 | |
27 | 10, 26 | neeq12i 2997 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ ;15) |
28 | 25, 27 | mpbir 230 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
29 | 2, 28 | setsnid 17204 | . . . . 5 ⊢ (Base‘(𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉)) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
30 | 14, 29 | eqtri 2754 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
31 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
32 | eqid 2726 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
33 | eqid 2726 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
34 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
35 | 31, 32, 33, 34 | oppcval 17719 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉)) |
36 | 35 | fveq2d 6895 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet 〈(Hom ‘ndx), tpos (Hom ‘𝐶)〉) sSet 〈(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (〈𝑧, (2nd ‘𝑢)〉(comp‘𝐶)(1st ‘𝑢)))〉))) |
37 | 30, 36 | eqtr4id 2785 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
38 | base0 17211 | . . . 4 ⊢ ∅ = (Base‘∅) | |
39 | fvprc 6883 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
40 | fvprc 6883 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
41 | 34, 40 | eqtrid 2778 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
42 | 41 | fveq2d 6895 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅)) |
43 | 38, 39, 42 | 3eqtr4a 2792 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
44 | 37, 43 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
45 | 1, 44 | eqtri 2754 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 Vcvv 3463 ∅c0 4323 〈cop 4630 class class class wbr 5144 × cxp 5671 ‘cfv 6544 (class class class)co 7414 ∈ cmpo 7416 1st c1st 7991 2nd c2nd 7992 tpos ctpos 8230 1c1 11148 < clt 11287 4c4 12313 5c5 12314 ;cdc 12721 sSet csts 17158 ndxcnx 17188 Basecbs 17206 Hom chom 17270 compcco 17271 oppCatcoppc 17717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7736 ax-cnex 11203 ax-resscn 11204 ax-1cn 11205 ax-icn 11206 ax-addcl 11207 ax-addrcl 11208 ax-mulcl 11209 ax-mulrcl 11210 ax-mulcom 11211 ax-addass 11212 ax-mulass 11213 ax-distr 11214 ax-i2m1 11215 ax-1ne0 11216 ax-1rid 11217 ax-rnegex 11218 ax-rrecex 11219 ax-cnre 11220 ax-pre-lttri 11221 ax-pre-lttrn 11222 ax-pre-ltadd 11223 ax-pre-mulgt0 11224 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3465 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4324 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4907 df-iun 4996 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6303 df-ord 6369 df-on 6370 df-lim 6371 df-suc 6372 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-2nd 7994 df-tpos 8231 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11289 df-mnf 11290 df-xr 11291 df-ltxr 11292 df-le 11293 df-sub 11485 df-neg 11486 df-nn 12257 df-2 12319 df-3 12320 df-4 12321 df-5 12322 df-6 12323 df-7 12324 df-8 12325 df-9 12326 df-n0 12517 df-z 12603 df-dec 12722 df-sets 17159 df-slot 17177 df-ndx 17189 df-base 17207 df-hom 17283 df-cco 17284 df-oppc 17718 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |