![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppcbasOLD | Structured version Visualization version GIF version |
Description: Obsolete version of oppcbas 17696 as of 18-Oct-2024. Base set of an opposite category. (Contributed by Mario Carneiro, 2-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
oppcbas.1 | ⊢ 𝑂 = (oppCat‘𝐶) |
oppcbas.2 | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
oppcbasOLD | ⊢ 𝐵 = (Base‘𝑂) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppcbas.2 | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
2 | baseid 17180 | . . . . . 6 ⊢ Base = Slot (Base‘ndx) | |
3 | 1re 11242 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
4 | 1nn 12251 | . . . . . . . . 9 ⊢ 1 ∈ ℕ | |
5 | 4nn0 12519 | . . . . . . . . 9 ⊢ 4 ∈ ℕ0 | |
6 | 1nn0 12516 | . . . . . . . . 9 ⊢ 1 ∈ ℕ0 | |
7 | 1lt10 12844 | . . . . . . . . 9 ⊢ 1 < ;10 | |
8 | 4, 5, 6, 7 | declti 12743 | . . . . . . . 8 ⊢ 1 < ;14 |
9 | 3, 8 | ltneii 11355 | . . . . . . 7 ⊢ 1 ≠ ;14 |
10 | basendx 17186 | . . . . . . . 8 ⊢ (Base‘ndx) = 1 | |
11 | homndx 17389 | . . . . . . . 8 ⊢ (Hom ‘ndx) = ;14 | |
12 | 10, 11 | neeq12i 2997 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
13 | 9, 12 | mpbir 230 | . . . . . 6 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
14 | 2, 13 | setsnid 17175 | . . . . 5 ⊢ (Base‘𝐶) = (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) |
15 | 5nn 12326 | . . . . . . . . . 10 ⊢ 5 ∈ ℕ | |
16 | 4lt5 12417 | . . . . . . . . . 10 ⊢ 4 < 5 | |
17 | 6, 5, 15, 16 | declt 12733 | . . . . . . . . 9 ⊢ ;14 < ;15 |
18 | 4nn 12323 | . . . . . . . . . . . 12 ⊢ 4 ∈ ℕ | |
19 | 6, 18 | decnncl 12725 | . . . . . . . . . . 11 ⊢ ;14 ∈ ℕ |
20 | 19 | nnrei 12249 | . . . . . . . . . 10 ⊢ ;14 ∈ ℝ |
21 | 6, 15 | decnncl 12725 | . . . . . . . . . . 11 ⊢ ;15 ∈ ℕ |
22 | 21 | nnrei 12249 | . . . . . . . . . 10 ⊢ ;15 ∈ ℝ |
23 | 3, 20, 22 | lttri 11368 | . . . . . . . . 9 ⊢ ((1 < ;14 ∧ ;14 < ;15) → 1 < ;15) |
24 | 8, 17, 23 | mp2an 690 | . . . . . . . 8 ⊢ 1 < ;15 |
25 | 3, 24 | ltneii 11355 | . . . . . . 7 ⊢ 1 ≠ ;15 |
26 | ccondx 17391 | . . . . . . . 8 ⊢ (comp‘ndx) = ;15 | |
27 | 10, 26 | neeq12i 2997 | . . . . . . 7 ⊢ ((Base‘ndx) ≠ (comp‘ndx) ↔ 1 ≠ ;15) |
28 | 25, 27 | mpbir 230 | . . . . . 6 ⊢ (Base‘ndx) ≠ (comp‘ndx) |
29 | 2, 28 | setsnid 17175 | . . . . 5 ⊢ (Base‘(𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩)) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
30 | 14, 29 | eqtri 2753 | . . . 4 ⊢ (Base‘𝐶) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
31 | eqid 2725 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
32 | eqid 2725 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
33 | eqid 2725 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
34 | oppcbas.1 | . . . . . 6 ⊢ 𝑂 = (oppCat‘𝐶) | |
35 | 31, 32, 33, 34 | oppcval 17690 | . . . . 5 ⊢ (𝐶 ∈ V → 𝑂 = ((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩)) |
36 | 35 | fveq2d 6895 | . . . 4 ⊢ (𝐶 ∈ V → (Base‘𝑂) = (Base‘((𝐶 sSet ⟨(Hom ‘ndx), tpos (Hom ‘𝐶)⟩) sSet ⟨(comp‘ndx), (𝑢 ∈ ((Base‘𝐶) × (Base‘𝐶)), 𝑧 ∈ (Base‘𝐶) ↦ tpos (⟨𝑧, (2nd ‘𝑢)⟩(comp‘𝐶)(1st ‘𝑢)))⟩))) |
37 | 30, 36 | eqtr4id 2784 | . . 3 ⊢ (𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
38 | base0 17182 | . . . 4 ⊢ ∅ = (Base‘∅) | |
39 | fvprc 6883 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = ∅) | |
40 | fvprc 6883 | . . . . . 6 ⊢ (¬ 𝐶 ∈ V → (oppCat‘𝐶) = ∅) | |
41 | 34, 40 | eqtrid 2777 | . . . . 5 ⊢ (¬ 𝐶 ∈ V → 𝑂 = ∅) |
42 | 41 | fveq2d 6895 | . . . 4 ⊢ (¬ 𝐶 ∈ V → (Base‘𝑂) = (Base‘∅)) |
43 | 38, 39, 42 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝐶 ∈ V → (Base‘𝐶) = (Base‘𝑂)) |
44 | 37, 43 | pm2.61i 182 | . 2 ⊢ (Base‘𝐶) = (Base‘𝑂) |
45 | 1, 44 | eqtri 2753 | 1 ⊢ 𝐵 = (Base‘𝑂) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1533 ∈ wcel 2098 ≠ wne 2930 Vcvv 3463 ∅c0 4318 ⟨cop 4630 class class class wbr 5143 × cxp 5670 ‘cfv 6542 (class class class)co 7415 ∈ cmpo 7417 1st c1st 7987 2nd c2nd 7988 tpos ctpos 8227 1c1 11137 < clt 11276 4c4 12297 5c5 12298 ;cdc 12705 sSet csts 17129 ndxcnx 17159 Basecbs 17177 Hom chom 17241 compcco 17242 oppCatcoppc 17688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-tpos 8228 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-hom 17254 df-cco 17255 df-oppc 17689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |