Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaltom Structured version   Visualization version   GIF version

Theorem oaltom 43398
Description: Multiplication eventually dominates addition. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
oaltom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴)))

Proof of Theorem oaltom
StepHypRef Expression
1 om2 43397 . . . . 5 (𝐵 ∈ On → (𝐵 +o 𝐵) = (𝐵 ·o 2o))
21ad2antlr 727 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐵) = (𝐵 ·o 2o))
3 2on 8401 . . . . . . . 8 2o ∈ On
43a1i 11 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 2o ∈ On)
5 simpl 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
6 simpr 484 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
74, 5, 63jca 1128 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
87adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
9 df-2o 8389 . . . . . . 7 2o = suc 1o
109a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o = suc 1o)
11 simprl 770 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 1o𝐴)
12 eloni 6317 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
1312adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
1413adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → Ord 𝐴)
1511, 14jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (1o𝐴 ∧ Ord 𝐴))
16 ordelsuc 7753 . . . . . . . 8 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 ↔ suc 1o𝐴))
1716biimpd 229 . . . . . . 7 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 → suc 1o𝐴))
1815, 11, 17sylc 65 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → suc 1o𝐴)
1910, 18eqsstrd 3970 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o𝐴)
20 omwordi 8489 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (𝐵 ·o 2o) ⊆ (𝐵 ·o 𝐴)))
218, 19, 20sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 2o) ⊆ (𝐵 ·o 𝐴))
222, 21eqsstrd 3970 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐵) ⊆ (𝐵 ·o 𝐴))
236, 6jca 511 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ On ∧ 𝐵 ∈ On))
24 simpr 484 . . . 4 ((1o𝐴𝐴𝐵) → 𝐴𝐵)
25 oaordi 8464 . . . . 5 ((𝐵 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵)))
2625imp 406 . . . 4 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵))
2723, 24, 26syl2an 596 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵))
2822, 27sseldd 3936 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴))
2928ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3903  Ord word 6306  Oncon0 6307  suc csuc 6309  (class class class)co 7349  1oc1o 8381  2oc2o 8382   +o coa 8385   ·o comu 8386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-oadd 8392  df-omul 8393
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator