Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaltom Structured version   Visualization version   GIF version

Theorem oaltom 43395
Description: Multiplication eventually dominates addition. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
oaltom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴)))

Proof of Theorem oaltom
StepHypRef Expression
1 om2 43394 . . . . 5 (𝐵 ∈ On → (𝐵 +o 𝐵) = (𝐵 ·o 2o))
21ad2antlr 727 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐵) = (𝐵 ·o 2o))
3 2on 8519 . . . . . . . 8 2o ∈ On
43a1i 11 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 2o ∈ On)
5 simpl 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
6 simpr 484 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
74, 5, 63jca 1127 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
87adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
9 df-2o 8506 . . . . . . 7 2o = suc 1o
109a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o = suc 1o)
11 simprl 771 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 1o𝐴)
12 eloni 6396 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
1312adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
1413adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → Ord 𝐴)
1511, 14jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (1o𝐴 ∧ Ord 𝐴))
16 ordelsuc 7840 . . . . . . . 8 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 ↔ suc 1o𝐴))
1716biimpd 229 . . . . . . 7 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 → suc 1o𝐴))
1815, 11, 17sylc 65 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → suc 1o𝐴)
1910, 18eqsstrd 4034 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o𝐴)
20 omwordi 8608 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (𝐵 ·o 2o) ⊆ (𝐵 ·o 𝐴)))
218, 19, 20sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 2o) ⊆ (𝐵 ·o 𝐴))
222, 21eqsstrd 4034 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐵) ⊆ (𝐵 ·o 𝐴))
236, 6jca 511 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ On ∧ 𝐵 ∈ On))
24 simpr 484 . . . 4 ((1o𝐴𝐴𝐵) → 𝐴𝐵)
25 oaordi 8583 . . . . 5 ((𝐵 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵)))
2625imp 406 . . . 4 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵))
2723, 24, 26syl2an 596 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵))
2822, 27sseldd 3996 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴))
2928ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wss 3963  Ord word 6385  Oncon0 6386  suc csuc 6388  (class class class)co 7431  1oc1o 8498  2oc2o 8499   +o coa 8502   ·o comu 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-omul 8510
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator