Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaltom Structured version   Visualization version   GIF version

Theorem oaltom 42758
Description: Multiplication eventually dominates addition. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
oaltom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴)))

Proof of Theorem oaltom
StepHypRef Expression
1 om2 42757 . . . . 5 (𝐵 ∈ On → (𝐵 +o 𝐵) = (𝐵 ·o 2o))
21ad2antlr 726 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐵) = (𝐵 ·o 2o))
3 2on 8494 . . . . . . . 8 2o ∈ On
43a1i 11 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 2o ∈ On)
5 simpl 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
6 simpr 484 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
74, 5, 63jca 1126 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
87adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
9 df-2o 8481 . . . . . . 7 2o = suc 1o
109a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o = suc 1o)
11 simprl 770 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 1o𝐴)
12 eloni 6373 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
1312adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
1413adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → Ord 𝐴)
1511, 14jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (1o𝐴 ∧ Ord 𝐴))
16 ordelsuc 7817 . . . . . . . 8 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 ↔ suc 1o𝐴))
1716biimpd 228 . . . . . . 7 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 → suc 1o𝐴))
1815, 11, 17sylc 65 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → suc 1o𝐴)
1910, 18eqsstrd 4016 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o𝐴)
20 omwordi 8585 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (𝐵 ·o 2o) ⊆ (𝐵 ·o 𝐴)))
218, 19, 20sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 2o) ⊆ (𝐵 ·o 𝐴))
222, 21eqsstrd 4016 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐵) ⊆ (𝐵 ·o 𝐴))
236, 6jca 511 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ On ∧ 𝐵 ∈ On))
24 simpr 484 . . . 4 ((1o𝐴𝐴𝐵) → 𝐴𝐵)
25 oaordi 8560 . . . . 5 ((𝐵 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵)))
2625imp 406 . . . 4 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵))
2723, 24, 26syl2an 595 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵))
2822, 27sseldd 3979 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴))
2928ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wss 3944  Ord word 6362  Oncon0 6363  suc csuc 6365  (class class class)co 7414  1oc1o 8473  2oc2o 8474   +o coa 8477   ·o comu 8478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-omul 8485
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator