Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oaltom Structured version   Visualization version   GIF version

Theorem oaltom 43387
Description: Multiplication eventually dominates addition. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
oaltom ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴)))

Proof of Theorem oaltom
StepHypRef Expression
1 om2 43386 . . . . 5 (𝐵 ∈ On → (𝐵 +o 𝐵) = (𝐵 ·o 2o))
21ad2antlr 727 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐵) = (𝐵 ·o 2o))
3 2on 8424 . . . . . . . 8 2o ∈ On
43a1i 11 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 2o ∈ On)
5 simpl 482 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ∈ On)
6 simpr 484 . . . . . . 7 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐵 ∈ On)
74, 5, 63jca 1128 . . . . . 6 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
87adantr 480 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On))
9 df-2o 8412 . . . . . . 7 2o = suc 1o
109a1i 11 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o = suc 1o)
11 simprl 770 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 1o𝐴)
12 eloni 6330 . . . . . . . . . 10 (𝐴 ∈ On → Ord 𝐴)
1312adantr 480 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → Ord 𝐴)
1413adantr 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → Ord 𝐴)
1511, 14jca 511 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (1o𝐴 ∧ Ord 𝐴))
16 ordelsuc 7775 . . . . . . . 8 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 ↔ suc 1o𝐴))
1716biimpd 229 . . . . . . 7 ((1o𝐴 ∧ Ord 𝐴) → (1o𝐴 → suc 1o𝐴))
1815, 11, 17sylc 65 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → suc 1o𝐴)
1910, 18eqsstrd 3978 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → 2o𝐴)
20 omwordi 8512 . . . . 5 ((2o ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (2o𝐴 → (𝐵 ·o 2o) ⊆ (𝐵 ·o 𝐴)))
218, 19, 20sylc 65 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 ·o 2o) ⊆ (𝐵 ·o 𝐴))
222, 21eqsstrd 3978 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐵) ⊆ (𝐵 ·o 𝐴))
236, 6jca 511 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐵 ∈ On ∧ 𝐵 ∈ On))
24 simpr 484 . . . 4 ((1o𝐴𝐴𝐵) → 𝐴𝐵)
25 oaordi 8487 . . . . 5 ((𝐵 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵)))
2625imp 406 . . . 4 (((𝐵 ∈ On ∧ 𝐵 ∈ On) ∧ 𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵))
2723, 24, 26syl2an 596 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐴) ∈ (𝐵 +o 𝐵))
2822, 27sseldd 3944 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ (1o𝐴𝐴𝐵)) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴))
2928ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((1o𝐴𝐴𝐵) → (𝐵 +o 𝐴) ∈ (𝐵 ·o 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wss 3911  Ord word 6319  Oncon0 6320  suc csuc 6322  (class class class)co 7369  1oc1o 8404  2oc2o 8405   +o coa 8408   ·o comu 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-omul 8416
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator