MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneqOLD Structured version   Visualization version   GIF version

Theorem onomeneqOLD 9263
Description: Obsolete version of onomeneq 9262 as of 29-Nov-2024. (Contributed by NM, 26-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onomeneqOLD ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem onomeneqOLD
StepHypRef Expression
1 php5 9248 . . . . . . . . 9 (𝐵 ∈ ω → ¬ 𝐵 ≈ suc 𝐵)
21ad2antlr 725 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐵 ≈ suc 𝐵)
3 enen1 9155 . . . . . . . . 9 (𝐴𝐵 → (𝐴 ≈ suc 𝐵𝐵 ≈ suc 𝐵))
43adantl 480 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ≈ suc 𝐵𝐵 ≈ suc 𝐵))
52, 4mtbird 324 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐴 ≈ suc 𝐵)
6 peano2 7902 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 sssucid 6456 . . . . . . . . . . . . . 14 𝐵 ⊆ suc 𝐵
8 ssdomg 9031 . . . . . . . . . . . . . 14 (suc 𝐵 ∈ ω → (𝐵 ⊆ suc 𝐵𝐵 ≼ suc 𝐵))
96, 7, 8mpisyl 21 . . . . . . . . . . . . 13 (𝐵 ∈ ω → 𝐵 ≼ suc 𝐵)
10 endomtr 9043 . . . . . . . . . . . . 13 ((𝐴𝐵𝐵 ≼ suc 𝐵) → 𝐴 ≼ suc 𝐵)
119, 10sylan2 591 . . . . . . . . . . . 12 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ≼ suc 𝐵)
1211ancoms 457 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ≼ suc 𝐵)
1312a1d 25 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≼ suc 𝐵))
1413adantll 712 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≼ suc 𝐵))
15 ssel 3973 . . . . . . . . . . . . . . 15 (ω ⊆ 𝐴 → (𝐵 ∈ ω → 𝐵𝐴))
1615com12 32 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → (ω ⊆ 𝐴𝐵𝐴))
1716adantr 479 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴𝐵𝐴))
18 eloni 6386 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Ord 𝐴)
19 ordelsuc 7829 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ Ord 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))
2018, 19sylan2 591 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ suc 𝐵𝐴))
2117, 20sylibd 238 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
22 ssdomg 9031 . . . . . . . . . . . . 13 (𝐴 ∈ On → (suc 𝐵𝐴 → suc 𝐵𝐴))
2322adantl 480 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (suc 𝐵𝐴 → suc 𝐵𝐴))
2421, 23syld 47 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2524ancoms 457 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2625adantr 479 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2714, 26jcad 511 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴 → (𝐴 ≼ suc 𝐵 ∧ suc 𝐵𝐴)))
28 sbth 9131 . . . . . . . 8 ((𝐴 ≼ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐴 ≈ suc 𝐵)
2927, 28syl6 35 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≈ suc 𝐵))
305, 29mtod 197 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ ω ⊆ 𝐴)
31 ordom 7886 . . . . . . . . 9 Ord ω
32 ordtri1 6409 . . . . . . . . 9 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
3331, 18, 32sylancr 585 . . . . . . . 8 (𝐴 ∈ On → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
3433con2bid 353 . . . . . . 7 (𝐴 ∈ On → (𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴))
3534ad2antrr 724 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴))
3630, 35mpbird 256 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
37 simplr 767 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
3836, 37jca 510 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
39 nneneq 9243 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
4039biimpa 475 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 = 𝐵)
4138, 40sylancom 586 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 = 𝐵)
4241ex 411 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
43 eqeng 9017 . . 3 (𝐴 ∈ On → (𝐴 = 𝐵𝐴𝐵))
4443adantr 479 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
4542, 44impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  wss 3947   class class class wbr 5153  Ord word 6375  Oncon0 6376  suc csuc 6378  ωcom 7876  cen 8971  cdom 8972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-om 7877  df-1o 8496  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator