MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onomeneqOLD Structured version   Visualization version   GIF version

Theorem onomeneqOLD 9071
Description: Obsolete version of onomeneq 9070 as of 29-Nov-2024. (Contributed by NM, 26-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onomeneqOLD ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))

Proof of Theorem onomeneqOLD
StepHypRef Expression
1 php5 9056 . . . . . . . . 9 (𝐵 ∈ ω → ¬ 𝐵 ≈ suc 𝐵)
21ad2antlr 724 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐵 ≈ suc 𝐵)
3 enen1 8959 . . . . . . . . 9 (𝐴𝐵 → (𝐴 ≈ suc 𝐵𝐵 ≈ suc 𝐵))
43adantl 482 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ≈ suc 𝐵𝐵 ≈ suc 𝐵))
52, 4mtbird 324 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ 𝐴 ≈ suc 𝐵)
6 peano2 7782 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → suc 𝐵 ∈ ω)
7 sssucid 6367 . . . . . . . . . . . . . 14 𝐵 ⊆ suc 𝐵
8 ssdomg 8838 . . . . . . . . . . . . . 14 (suc 𝐵 ∈ ω → (𝐵 ⊆ suc 𝐵𝐵 ≼ suc 𝐵))
96, 7, 8mpisyl 21 . . . . . . . . . . . . 13 (𝐵 ∈ ω → 𝐵 ≼ suc 𝐵)
10 endomtr 8850 . . . . . . . . . . . . 13 ((𝐴𝐵𝐵 ≼ suc 𝐵) → 𝐴 ≼ suc 𝐵)
119, 10sylan2 593 . . . . . . . . . . . 12 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ≼ suc 𝐵)
1211ancoms 459 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴𝐵) → 𝐴 ≼ suc 𝐵)
1312a1d 25 . . . . . . . . . 10 ((𝐵 ∈ ω ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≼ suc 𝐵))
1413adantll 711 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≼ suc 𝐵))
15 ssel 3924 . . . . . . . . . . . . . . 15 (ω ⊆ 𝐴 → (𝐵 ∈ ω → 𝐵𝐴))
1615com12 32 . . . . . . . . . . . . . 14 (𝐵 ∈ ω → (ω ⊆ 𝐴𝐵𝐴))
1716adantr 481 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴𝐵𝐴))
18 eloni 6298 . . . . . . . . . . . . . 14 (𝐴 ∈ On → Ord 𝐴)
19 ordelsuc 7710 . . . . . . . . . . . . . 14 ((𝐵 ∈ ω ∧ Ord 𝐴) → (𝐵𝐴 ↔ suc 𝐵𝐴))
2018, 19sylan2 593 . . . . . . . . . . . . 13 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ suc 𝐵𝐴))
2117, 20sylibd 238 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
22 ssdomg 8838 . . . . . . . . . . . . 13 (𝐴 ∈ On → (suc 𝐵𝐴 → suc 𝐵𝐴))
2322adantl 482 . . . . . . . . . . . 12 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (suc 𝐵𝐴 → suc 𝐵𝐴))
2421, 23syld 47 . . . . . . . . . . 11 ((𝐵 ∈ ω ∧ 𝐴 ∈ On) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2524ancoms 459 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2625adantr 481 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴 → suc 𝐵𝐴))
2714, 26jcad 513 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴 → (𝐴 ≼ suc 𝐵 ∧ suc 𝐵𝐴)))
28 sbth 8935 . . . . . . . 8 ((𝐴 ≼ suc 𝐵 ∧ suc 𝐵𝐴) → 𝐴 ≈ suc 𝐵)
2927, 28syl6 35 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (ω ⊆ 𝐴𝐴 ≈ suc 𝐵))
305, 29mtod 197 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → ¬ ω ⊆ 𝐴)
31 ordom 7767 . . . . . . . . 9 Ord ω
32 ordtri1 6321 . . . . . . . . 9 ((Ord ω ∧ Ord 𝐴) → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
3331, 18, 32sylancr 587 . . . . . . . 8 (𝐴 ∈ On → (ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω))
3433con2bid 354 . . . . . . 7 (𝐴 ∈ On → (𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴))
3534ad2antrr 723 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ∈ ω ↔ ¬ ω ⊆ 𝐴))
3630, 35mpbird 256 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 ∈ ω)
37 simplr 766 . . . . 5 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐵 ∈ ω)
3836, 37jca 512 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → (𝐴 ∈ ω ∧ 𝐵 ∈ ω))
39 nneneq 9051 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
4039biimpa 477 . . . 4 (((𝐴 ∈ ω ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 = 𝐵)
4138, 40sylancom 588 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ ω) ∧ 𝐴𝐵) → 𝐴 = 𝐵)
4241ex 413 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
43 eqeng 8824 . . 3 (𝐴 ∈ On → (𝐴 = 𝐵𝐴𝐵))
4443adantr 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 = 𝐵𝐴𝐵))
4542, 44impbid 211 1 ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  wss 3897   class class class wbr 5087  Ord word 6287  Oncon0 6288  suc csuc 6290  ωcom 7757  cen 8778  cdom 8779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-om 7758  df-1o 8344  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-fin 8785
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator