![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funimassov | Structured version Visualization version GIF version |
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013.) |
Ref | Expression |
---|---|
funimassov | ⊢ ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funimass4 6956 | . 2 ⊢ ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) ∈ 𝐶)) | |
2 | fveq2 6891 | . . . . 5 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝐹‘⟨𝑥, 𝑦⟩)) | |
3 | df-ov 7411 | . . . . 5 ⊢ (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩) | |
4 | 2, 3 | eqtr4di 2790 | . . . 4 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹‘𝑧) = (𝑥𝐹𝑦)) |
5 | 4 | eleq1d 2818 | . . 3 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹‘𝑧) ∈ 𝐶 ↔ (𝑥𝐹𝑦) ∈ 𝐶)) |
6 | 5 | ralxp 5841 | . 2 ⊢ (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹‘𝑧) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶) |
7 | 1, 6 | bitrdi 286 | 1 ⊢ ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 (𝑥𝐹𝑦) ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3948 ⟨cop 4634 × cxp 5674 dom cdm 5676 “ cima 5679 Fun wfun 6537 ‘cfv 6543 (class class class)co 7408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-ov 7411 |
This theorem is referenced by: naddcllem 8674 naddov2 8677 naddasslem1 8692 naddasslem2 8693 dprd2da 19911 xkococnlem 23162 iscfil2 24782 itg1addlem4 25215 itg1addlem4OLD 25216 issh2 30457 cvmlift2lem9 34297 |
Copyright terms: Public domain | W3C validator |