MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimassov Structured version   Visualization version   GIF version

Theorem funimassov 7595
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
funimassov ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem funimassov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funimass4 6958 . 2 ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) ∈ 𝐶))
2 fveq2 6892 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7419 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2783 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54eleq1d 2810 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) ∈ 𝐶 ↔ (𝑥𝐹𝑦) ∈ 𝐶))
65ralxp 5838 . 2 (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) ∈ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶)
71, 6bitrdi 286 1 ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3051  wss 3939  cop 4630   × cxp 5670  dom cdm 5672  cima 5675  Fun wfun 6537  cfv 6543  (class class class)co 7416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-fv 6551  df-ov 7419
This theorem is referenced by:  naddcllem  8695  naddov2  8698  naddasslem1  8713  naddasslem2  8714  dprd2da  20003  xkococnlem  23581  iscfil2  25212  itg1addlem4  25646  itg1addlem4OLD  25647  issh2  31063  cvmlift2lem9  34978
  Copyright terms: Public domain W3C validator