MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funimassov Structured version   Visualization version   GIF version

Theorem funimassov 7581
Description: Membership relation for the values of a function whose image is a subclass. (Contributed by Mario Carneiro, 23-Dec-2013.)
Assertion
Ref Expression
funimassov ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦   𝑥,𝐹,𝑦

Proof of Theorem funimassov
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 funimass4 6950 . 2 ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) ∈ 𝐶))
2 fveq2 6885 . . . . 5 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝐹‘⟨𝑥, 𝑦⟩))
3 df-ov 7408 . . . . 5 (𝑥𝐹𝑦) = (𝐹‘⟨𝑥, 𝑦⟩)
42, 3eqtr4di 2784 . . . 4 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝐹𝑧) = (𝑥𝐹𝑦))
54eleq1d 2812 . . 3 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝐹𝑧) ∈ 𝐶 ↔ (𝑥𝐹𝑦) ∈ 𝐶))
65ralxp 5835 . 2 (∀𝑧 ∈ (𝐴 × 𝐵)(𝐹𝑧) ∈ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶)
71, 6bitrdi 287 1 ((Fun 𝐹 ∧ (𝐴 × 𝐵) ⊆ dom 𝐹) → ((𝐹 “ (𝐴 × 𝐵)) ⊆ 𝐶 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wral 3055  wss 3943  cop 4629   × cxp 5667  dom cdm 5669  cima 5672  Fun wfun 6531  cfv 6537  (class class class)co 7405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-fv 6545  df-ov 7408
This theorem is referenced by:  naddcllem  8677  naddov2  8680  naddasslem1  8695  naddasslem2  8696  dprd2da  19964  xkococnlem  23518  iscfil2  25149  itg1addlem4  25583  itg1addlem4OLD  25584  issh2  30971  cvmlift2lem9  34830
  Copyright terms: Public domain W3C validator