Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pet2 | Structured version Visualization version GIF version |
Description: Partition-Equivalence Theorem, with general 𝑅. This theorem (together with pet 37069 and pets 37070) is the main result of my investigation into set theory, see the comment of pet 37069. (Contributed by Peter Mazsa, 24-May-2021.) (Revised by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
pet2 | ⊢ (( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvrelqseqdisj5 37051 | . 2 ⊢ (( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴) → Disj (𝑅 ⋉ (◡ E ↾ 𝐴))) | |
2 | 1 | petlem 37030 | 1 ⊢ (( Disj (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ (◡ E ↾ 𝐴)) / (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ (◡ E ↾ 𝐴)) / ≀ (𝑅 ⋉ (◡ E ↾ 𝐴))) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1540 E cep 5512 ◡ccnv 5606 dom cdm 5607 ↾ cres 5609 / cqs 8545 ⋉ cxrn 36388 ≀ ccoss 36389 EqvRel weqvrel 36406 Disj wdisjALTV 36423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 ax-un 7628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-eprel 5513 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-fo 6471 df-fv 6473 df-1st 7876 df-2nd 7877 df-ec 8548 df-qs 8552 df-xrn 36589 df-coss 36629 df-refrel 36730 df-cnvrefrel 36745 df-symrel 36762 df-trrel 36792 df-eqvrel 36803 df-funALTV 36900 df-disjALTV 36923 df-eldisj 36925 |
This theorem is referenced by: pet 37069 |
Copyright terms: Public domain | W3C validator |