Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pet2 Structured version   Visualization version   GIF version

Theorem pet2 37064
Description: Partition-Equivalence Theorem, with general 𝑅. This theorem (together with pet 37065 and pets 37066) is the main result of my investigation into set theory, see the comment of pet 37065. (Contributed by Peter Mazsa, 24-May-2021.) (Revised by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
pet2 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))

Proof of Theorem pet2
StepHypRef Expression
1 eqvrelqseqdisj5 37047 . 2 (( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴) → Disj (𝑅 ⋉ ( E ↾ 𝐴)))
21petlem 37026 1 (( Disj (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom (𝑅 ⋉ ( E ↾ 𝐴)) / (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴) ↔ ( EqvRel ≀ (𝑅 ⋉ ( E ↾ 𝐴)) ∧ (dom ≀ (𝑅 ⋉ ( E ↾ 𝐴)) / ≀ (𝑅 ⋉ ( E ↾ 𝐴))) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1539   E cep 5505  ccnv 5599  dom cdm 5600  cres 5602   / cqs 8528  cxrn 36380  ccoss 36381   EqvRel weqvrel 36398   Disj wdisjALTV 36415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3331  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-eprel 5506  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fo 6464  df-fv 6466  df-1st 7863  df-2nd 7864  df-ec 8531  df-qs 8535  df-xrn 36585  df-coss 36625  df-refrel 36726  df-cnvrefrel 36741  df-symrel 36758  df-trrel 36788  df-eqvrel 36799  df-funALTV 36896  df-disjALTV 36919  df-eldisj 36921
This theorem is referenced by:  pet  37065
  Copyright terms: Public domain W3C validator