MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivlem3 Structured version   Visualization version   GIF version

Theorem plydivlem3 25692
Description: Lemma for plydivex 25694. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
plydiv.0 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
Assertion
Ref Expression
plydivlem3 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivlem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plybss 25592 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
3 ply0 25606 . . 3 (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆))
41, 2, 33syl 18 . 2 (𝜑 → 0𝑝 ∈ (Poly‘𝑆))
5 plydiv.0 . . 3 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
6 cnex 11141 . . . . . . 7 ℂ ∈ V
76a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
8 plyf 25596 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
9 ffn 6673 . . . . . . 7 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
101, 8, 93syl 18 . . . . . 6 (𝜑𝐹 Fn ℂ)
11 plydiv.g . . . . . . . 8 (𝜑𝐺 ∈ (Poly‘𝑆))
12 plyf 25596 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
13 ffn 6673 . . . . . . . 8 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
1411, 12, 133syl 18 . . . . . . 7 (𝜑𝐺 Fn ℂ)
15 plyf 25596 . . . . . . . 8 (0𝑝 ∈ (Poly‘𝑆) → 0𝑝:ℂ⟶ℂ)
16 ffn 6673 . . . . . . . 8 (0𝑝:ℂ⟶ℂ → 0𝑝 Fn ℂ)
174, 15, 163syl 18 . . . . . . 7 (𝜑 → 0𝑝 Fn ℂ)
18 inidm 4183 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
1914, 17, 7, 7, 18offn 7635 . . . . . 6 (𝜑 → (𝐺f · 0𝑝) Fn ℂ)
20 eqidd 2732 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = (𝐹𝑧))
21 eqidd 2732 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) = (𝐺𝑧))
22 0pval 25072 . . . . . . . . 9 (𝑧 ∈ ℂ → (0𝑝𝑧) = 0)
2322adantl 482 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (0𝑝𝑧) = 0)
2414, 17, 7, 7, 18, 21, 23ofval 7633 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺f · 0𝑝)‘𝑧) = ((𝐺𝑧) · 0))
2511, 12syl 17 . . . . . . . . 9 (𝜑𝐺:ℂ⟶ℂ)
2625ffvelcdmda 7040 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
2726mul01d 11363 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧) · 0) = 0)
2824, 27eqtrd 2771 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐺f · 0𝑝)‘𝑧) = 0)
291, 8syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
3029ffvelcdmda 7040 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
3130subid1d 11510 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐹𝑧) − 0) = (𝐹𝑧))
327, 10, 19, 10, 20, 28, 31offveq 7646 . . . . 5 (𝜑 → (𝐹f − (𝐺f · 0𝑝)) = 𝐹)
3332eqeq1d 2733 . . . 4 (𝜑 → ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝𝐹 = 0𝑝))
3432fveq2d 6851 . . . . . 6 (𝜑 → (deg‘(𝐹f − (𝐺f · 0𝑝))) = (deg‘𝐹))
35 dgrcl 25631 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
3611, 35syl 17 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℕ0)
3736nn0red 12483 . . . . . . . . 9 (𝜑 → (deg‘𝐺) ∈ ℝ)
3837recnd 11192 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℂ)
3938addlidd 11365 . . . . . . 7 (𝜑 → (0 + (deg‘𝐺)) = (deg‘𝐺))
4039eqcomd 2737 . . . . . 6 (𝜑 → (deg‘𝐺) = (0 + (deg‘𝐺)))
4134, 40breq12d 5123 . . . . 5 (𝜑 → ((deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺) ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
42 dgrcl 25631 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
431, 42syl 17 . . . . . . 7 (𝜑 → (deg‘𝐹) ∈ ℕ0)
4443nn0red 12483 . . . . . 6 (𝜑 → (deg‘𝐹) ∈ ℝ)
45 0red 11167 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4644, 37, 45ltsubaddd 11760 . . . . 5 (𝜑 → (((deg‘𝐹) − (deg‘𝐺)) < 0 ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
4741, 46bitr4d 281 . . . 4 (𝜑 → ((deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺) ↔ ((deg‘𝐹) − (deg‘𝐺)) < 0))
4833, 47orbi12d 917 . . 3 (𝜑 → (((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)) ↔ (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)))
495, 48mpbird 256 . 2 (𝜑 → ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)))
50 plydiv.r . . . . . 6 𝑅 = (𝐹f − (𝐺f · 𝑞))
51 oveq2 7370 . . . . . . 7 (𝑞 = 0𝑝 → (𝐺f · 𝑞) = (𝐺f · 0𝑝))
5251oveq2d 7378 . . . . . 6 (𝑞 = 0𝑝 → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 0𝑝)))
5350, 52eqtrid 2783 . . . . 5 (𝑞 = 0𝑝𝑅 = (𝐹f − (𝐺f · 0𝑝)))
5453eqeq1d 2733 . . . 4 (𝑞 = 0𝑝 → (𝑅 = 0𝑝 ↔ (𝐹f − (𝐺f · 0𝑝)) = 0𝑝))
5553fveq2d 6851 . . . . 5 (𝑞 = 0𝑝 → (deg‘𝑅) = (deg‘(𝐹f − (𝐺f · 0𝑝))))
5655breq1d 5120 . . . 4 (𝑞 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)))
5754, 56orbi12d 917 . . 3 (𝑞 = 0𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺))))
5857rspcev 3582 . 2 ((0𝑝 ∈ (Poly‘𝑆) ∧ ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺))) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
594, 49, 58syl2anc 584 1 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2939  wrex 3069  Vcvv 3446  wss 3913   class class class wbr 5110   Fn wfn 6496  wf 6497  cfv 6501  (class class class)co 7362  f cof 7620  cc 11058  0cc0 11060  1c1 11061   + caddc 11063   · cmul 11065   < clt 11198  cmin 11394  -cneg 11395   / cdiv 11821  0cn0 12422  0𝑝c0p 25070  Polycply 25582  degcdgr 25585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-inf2 9586  ax-cnex 11116  ax-resscn 11117  ax-1cn 11118  ax-icn 11119  ax-addcl 11120  ax-addrcl 11121  ax-mulcl 11122  ax-mulrcl 11123  ax-mulcom 11124  ax-addass 11125  ax-mulass 11126  ax-distr 11127  ax-i2m1 11128  ax-1ne0 11129  ax-1rid 11130  ax-rnegex 11131  ax-rrecex 11132  ax-cnre 11133  ax-pre-lttri 11134  ax-pre-lttrn 11135  ax-pre-ltadd 11136  ax-pre-mulgt0 11137  ax-pre-sup 11138
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3351  df-reu 3352  df-rab 3406  df-v 3448  df-sbc 3743  df-csb 3859  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-pss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-int 4913  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-se 5594  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-isom 6510  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-pm 8775  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9387  df-inf 9388  df-oi 9455  df-card 9884  df-pnf 11200  df-mnf 11201  df-xr 11202  df-ltxr 11203  df-le 11204  df-sub 11396  df-neg 11397  df-div 11822  df-nn 12163  df-2 12225  df-3 12226  df-n0 12423  df-z 12509  df-uz 12773  df-rp 12925  df-fz 13435  df-fzo 13578  df-fl 13707  df-seq 13917  df-exp 13978  df-hash 14241  df-cj 14996  df-re 14997  df-im 14998  df-sqrt 15132  df-abs 15133  df-clim 15382  df-rlim 15383  df-sum 15583  df-0p 25071  df-ply 25586  df-coe 25588  df-dgr 25589
This theorem is referenced by:  plydivex  25694
  Copyright terms: Public domain W3C validator