MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivlem3 Structured version   Visualization version   GIF version

Theorem plydivlem3 26355
Description: Lemma for plydivex 26357. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
plydiv.0 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
Assertion
Ref Expression
plydivlem3 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivlem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plybss 26253 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
3 ply0 26267 . . 3 (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆))
41, 2, 33syl 18 . 2 (𝜑 → 0𝑝 ∈ (Poly‘𝑆))
5 plydiv.0 . . 3 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
6 cnex 11265 . . . . . . 7 ℂ ∈ V
76a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
8 plyf 26257 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
9 ffn 6747 . . . . . . 7 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
101, 8, 93syl 18 . . . . . 6 (𝜑𝐹 Fn ℂ)
11 plydiv.g . . . . . . . 8 (𝜑𝐺 ∈ (Poly‘𝑆))
12 plyf 26257 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
13 ffn 6747 . . . . . . . 8 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
1411, 12, 133syl 18 . . . . . . 7 (𝜑𝐺 Fn ℂ)
15 plyf 26257 . . . . . . . 8 (0𝑝 ∈ (Poly‘𝑆) → 0𝑝:ℂ⟶ℂ)
16 ffn 6747 . . . . . . . 8 (0𝑝:ℂ⟶ℂ → 0𝑝 Fn ℂ)
174, 15, 163syl 18 . . . . . . 7 (𝜑 → 0𝑝 Fn ℂ)
18 inidm 4248 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
1914, 17, 7, 7, 18offn 7727 . . . . . 6 (𝜑 → (𝐺f · 0𝑝) Fn ℂ)
20 eqidd 2741 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = (𝐹𝑧))
21 eqidd 2741 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) = (𝐺𝑧))
22 0pval 25725 . . . . . . . . 9 (𝑧 ∈ ℂ → (0𝑝𝑧) = 0)
2322adantl 481 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (0𝑝𝑧) = 0)
2414, 17, 7, 7, 18, 21, 23ofval 7725 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺f · 0𝑝)‘𝑧) = ((𝐺𝑧) · 0))
2511, 12syl 17 . . . . . . . . 9 (𝜑𝐺:ℂ⟶ℂ)
2625ffvelcdmda 7118 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
2726mul01d 11489 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧) · 0) = 0)
2824, 27eqtrd 2780 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐺f · 0𝑝)‘𝑧) = 0)
291, 8syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
3029ffvelcdmda 7118 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
3130subid1d 11636 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐹𝑧) − 0) = (𝐹𝑧))
327, 10, 19, 10, 20, 28, 31offveq 7739 . . . . 5 (𝜑 → (𝐹f − (𝐺f · 0𝑝)) = 𝐹)
3332eqeq1d 2742 . . . 4 (𝜑 → ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝𝐹 = 0𝑝))
3432fveq2d 6924 . . . . . 6 (𝜑 → (deg‘(𝐹f − (𝐺f · 0𝑝))) = (deg‘𝐹))
35 dgrcl 26292 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
3611, 35syl 17 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℕ0)
3736nn0red 12614 . . . . . . . . 9 (𝜑 → (deg‘𝐺) ∈ ℝ)
3837recnd 11318 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℂ)
3938addlidd 11491 . . . . . . 7 (𝜑 → (0 + (deg‘𝐺)) = (deg‘𝐺))
4039eqcomd 2746 . . . . . 6 (𝜑 → (deg‘𝐺) = (0 + (deg‘𝐺)))
4134, 40breq12d 5179 . . . . 5 (𝜑 → ((deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺) ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
42 dgrcl 26292 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
431, 42syl 17 . . . . . . 7 (𝜑 → (deg‘𝐹) ∈ ℕ0)
4443nn0red 12614 . . . . . 6 (𝜑 → (deg‘𝐹) ∈ ℝ)
45 0red 11293 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4644, 37, 45ltsubaddd 11886 . . . . 5 (𝜑 → (((deg‘𝐹) − (deg‘𝐺)) < 0 ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
4741, 46bitr4d 282 . . . 4 (𝜑 → ((deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺) ↔ ((deg‘𝐹) − (deg‘𝐺)) < 0))
4833, 47orbi12d 917 . . 3 (𝜑 → (((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)) ↔ (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)))
495, 48mpbird 257 . 2 (𝜑 → ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)))
50 plydiv.r . . . . . 6 𝑅 = (𝐹f − (𝐺f · 𝑞))
51 oveq2 7456 . . . . . . 7 (𝑞 = 0𝑝 → (𝐺f · 𝑞) = (𝐺f · 0𝑝))
5251oveq2d 7464 . . . . . 6 (𝑞 = 0𝑝 → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 0𝑝)))
5350, 52eqtrid 2792 . . . . 5 (𝑞 = 0𝑝𝑅 = (𝐹f − (𝐺f · 0𝑝)))
5453eqeq1d 2742 . . . 4 (𝑞 = 0𝑝 → (𝑅 = 0𝑝 ↔ (𝐹f − (𝐺f · 0𝑝)) = 0𝑝))
5553fveq2d 6924 . . . . 5 (𝑞 = 0𝑝 → (deg‘𝑅) = (deg‘(𝐹f − (𝐺f · 0𝑝))))
5655breq1d 5176 . . . 4 (𝑞 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)))
5754, 56orbi12d 917 . . 3 (𝑞 = 0𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺))))
5857rspcev 3635 . 2 ((0𝑝 ∈ (Poly‘𝑆) ∧ ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺))) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
594, 49, 58syl2anc 583 1 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cmin 11520  -cneg 11521   / cdiv 11947  0cn0 12553  0𝑝c0p 25723  Polycply 26243  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249  df-dgr 26250
This theorem is referenced by:  plydivex  26357
  Copyright terms: Public domain W3C validator