MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivlem3 Structured version   Visualization version   GIF version

Theorem plydivlem3 24883
Description: Lemma for plydivex 24885. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
plydiv.0 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
Assertion
Ref Expression
plydivlem3 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivlem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plybss 24783 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
3 ply0 24797 . . 3 (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆))
41, 2, 33syl 18 . 2 (𝜑 → 0𝑝 ∈ (Poly‘𝑆))
5 plydiv.0 . . 3 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
6 cnex 10617 . . . . . . 7 ℂ ∈ V
76a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
8 plyf 24787 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
9 ffn 6513 . . . . . . 7 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
101, 8, 93syl 18 . . . . . 6 (𝜑𝐹 Fn ℂ)
11 plydiv.g . . . . . . . 8 (𝜑𝐺 ∈ (Poly‘𝑆))
12 plyf 24787 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
13 ffn 6513 . . . . . . . 8 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
1411, 12, 133syl 18 . . . . . . 7 (𝜑𝐺 Fn ℂ)
15 plyf 24787 . . . . . . . 8 (0𝑝 ∈ (Poly‘𝑆) → 0𝑝:ℂ⟶ℂ)
16 ffn 6513 . . . . . . . 8 (0𝑝:ℂ⟶ℂ → 0𝑝 Fn ℂ)
174, 15, 163syl 18 . . . . . . 7 (𝜑 → 0𝑝 Fn ℂ)
18 inidm 4194 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
1914, 17, 7, 7, 18offn 7419 . . . . . 6 (𝜑 → (𝐺f · 0𝑝) Fn ℂ)
20 eqidd 2822 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = (𝐹𝑧))
21 eqidd 2822 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) = (𝐺𝑧))
22 0pval 24271 . . . . . . . . 9 (𝑧 ∈ ℂ → (0𝑝𝑧) = 0)
2322adantl 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (0𝑝𝑧) = 0)
2414, 17, 7, 7, 18, 21, 23ofval 7417 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺f · 0𝑝)‘𝑧) = ((𝐺𝑧) · 0))
2511, 12syl 17 . . . . . . . . 9 (𝜑𝐺:ℂ⟶ℂ)
2625ffvelrnda 6850 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
2726mul01d 10838 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧) · 0) = 0)
2824, 27eqtrd 2856 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐺f · 0𝑝)‘𝑧) = 0)
291, 8syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
3029ffvelrnda 6850 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
3130subid1d 10985 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐹𝑧) − 0) = (𝐹𝑧))
327, 10, 19, 10, 20, 28, 31offveq 7429 . . . . 5 (𝜑 → (𝐹f − (𝐺f · 0𝑝)) = 𝐹)
3332eqeq1d 2823 . . . 4 (𝜑 → ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝𝐹 = 0𝑝))
3432fveq2d 6673 . . . . . 6 (𝜑 → (deg‘(𝐹f − (𝐺f · 0𝑝))) = (deg‘𝐹))
35 dgrcl 24822 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
3611, 35syl 17 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℕ0)
3736nn0red 11955 . . . . . . . . 9 (𝜑 → (deg‘𝐺) ∈ ℝ)
3837recnd 10668 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℂ)
3938addid2d 10840 . . . . . . 7 (𝜑 → (0 + (deg‘𝐺)) = (deg‘𝐺))
4039eqcomd 2827 . . . . . 6 (𝜑 → (deg‘𝐺) = (0 + (deg‘𝐺)))
4134, 40breq12d 5078 . . . . 5 (𝜑 → ((deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺) ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
42 dgrcl 24822 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
431, 42syl 17 . . . . . . 7 (𝜑 → (deg‘𝐹) ∈ ℕ0)
4443nn0red 11955 . . . . . 6 (𝜑 → (deg‘𝐹) ∈ ℝ)
45 0red 10643 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4644, 37, 45ltsubaddd 11235 . . . . 5 (𝜑 → (((deg‘𝐹) − (deg‘𝐺)) < 0 ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
4741, 46bitr4d 284 . . . 4 (𝜑 → ((deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺) ↔ ((deg‘𝐹) − (deg‘𝐺)) < 0))
4833, 47orbi12d 915 . . 3 (𝜑 → (((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)) ↔ (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)))
495, 48mpbird 259 . 2 (𝜑 → ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)))
50 plydiv.r . . . . . 6 𝑅 = (𝐹f − (𝐺f · 𝑞))
51 oveq2 7163 . . . . . . 7 (𝑞 = 0𝑝 → (𝐺f · 𝑞) = (𝐺f · 0𝑝))
5251oveq2d 7171 . . . . . 6 (𝑞 = 0𝑝 → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 0𝑝)))
5350, 52syl5eq 2868 . . . . 5 (𝑞 = 0𝑝𝑅 = (𝐹f − (𝐺f · 0𝑝)))
5453eqeq1d 2823 . . . 4 (𝑞 = 0𝑝 → (𝑅 = 0𝑝 ↔ (𝐹f − (𝐺f · 0𝑝)) = 0𝑝))
5553fveq2d 6673 . . . . 5 (𝑞 = 0𝑝 → (deg‘𝑅) = (deg‘(𝐹f − (𝐺f · 0𝑝))))
5655breq1d 5075 . . . 4 (𝑞 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)))
5754, 56orbi12d 915 . . 3 (𝑞 = 0𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺))))
5857rspcev 3622 . 2 ((0𝑝 ∈ (Poly‘𝑆) ∧ ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺))) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
594, 49, 58syl2anc 586 1 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  wne 3016  wrex 3139  Vcvv 3494  wss 3935   class class class wbr 5065   Fn wfn 6349  wf 6350  cfv 6354  (class class class)co 7155  f cof 7406  cc 10534  0cc0 10536  1c1 10537   + caddc 10539   · cmul 10541   < clt 10674  cmin 10869  -cneg 10870   / cdiv 11296  0cn0 11896  0𝑝c0p 24269  Polycply 24773  degcdgr 24776
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-fl 13161  df-seq 13369  df-exp 13429  df-hash 13690  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-clim 14844  df-rlim 14845  df-sum 15042  df-0p 24270  df-ply 24777  df-coe 24779  df-dgr 24780
This theorem is referenced by:  plydivex  24885
  Copyright terms: Public domain W3C validator