MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plydivlem3 Structured version   Visualization version   GIF version

Theorem plydivlem3 26274
Description: Lemma for plydivex 26276. Base case of induction. (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
plydiv.r 𝑅 = (𝐹f − (𝐺f · 𝑞))
plydiv.0 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
Assertion
Ref Expression
plydivlem3 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Distinct variable groups:   𝑥,𝑦,𝑞,𝐹   𝜑,𝑥,𝑦   𝐺,𝑞,𝑥,𝑦   𝑥,𝑅,𝑦   𝑆,𝑞,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑞)   𝑅(𝑞)

Proof of Theorem plydivlem3
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . 3 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plybss 26170 . . 3 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
3 ply0 26184 . . 3 (𝑆 ⊆ ℂ → 0𝑝 ∈ (Poly‘𝑆))
41, 2, 33syl 18 . 2 (𝜑 → 0𝑝 ∈ (Poly‘𝑆))
5 plydiv.0 . . 3 (𝜑 → (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0))
6 cnex 11218 . . . . . . 7 ℂ ∈ V
76a1i 11 . . . . . 6 (𝜑 → ℂ ∈ V)
8 plyf 26174 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
9 ffn 6716 . . . . . . 7 (𝐹:ℂ⟶ℂ → 𝐹 Fn ℂ)
101, 8, 93syl 18 . . . . . 6 (𝜑𝐹 Fn ℂ)
11 plydiv.g . . . . . . . 8 (𝜑𝐺 ∈ (Poly‘𝑆))
12 plyf 26174 . . . . . . . 8 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
13 ffn 6716 . . . . . . . 8 (𝐺:ℂ⟶ℂ → 𝐺 Fn ℂ)
1411, 12, 133syl 18 . . . . . . 7 (𝜑𝐺 Fn ℂ)
15 plyf 26174 . . . . . . . 8 (0𝑝 ∈ (Poly‘𝑆) → 0𝑝:ℂ⟶ℂ)
16 ffn 6716 . . . . . . . 8 (0𝑝:ℂ⟶ℂ → 0𝑝 Fn ℂ)
174, 15, 163syl 18 . . . . . . 7 (𝜑 → 0𝑝 Fn ℂ)
18 inidm 4207 . . . . . . 7 (ℂ ∩ ℂ) = ℂ
1914, 17, 7, 7, 18offn 7692 . . . . . 6 (𝜑 → (𝐺f · 0𝑝) Fn ℂ)
20 eqidd 2735 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) = (𝐹𝑧))
21 eqidd 2735 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) = (𝐺𝑧))
22 0pval 25643 . . . . . . . . 9 (𝑧 ∈ ℂ → (0𝑝𝑧) = 0)
2322adantl 481 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (0𝑝𝑧) = 0)
2414, 17, 7, 7, 18, 21, 23ofval 7690 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺f · 0𝑝)‘𝑧) = ((𝐺𝑧) · 0))
2511, 12syl 17 . . . . . . . . 9 (𝜑𝐺:ℂ⟶ℂ)
2625ffvelcdmda 7084 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
2726mul01d 11442 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧) · 0) = 0)
2824, 27eqtrd 2769 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐺f · 0𝑝)‘𝑧) = 0)
291, 8syl 17 . . . . . . . 8 (𝜑𝐹:ℂ⟶ℂ)
3029ffvelcdmda 7084 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → (𝐹𝑧) ∈ ℂ)
3130subid1d 11591 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → ((𝐹𝑧) − 0) = (𝐹𝑧))
327, 10, 19, 10, 20, 28, 31offveq 7705 . . . . 5 (𝜑 → (𝐹f − (𝐺f · 0𝑝)) = 𝐹)
3332eqeq1d 2736 . . . 4 (𝜑 → ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝𝐹 = 0𝑝))
3432fveq2d 6890 . . . . . 6 (𝜑 → (deg‘(𝐹f − (𝐺f · 0𝑝))) = (deg‘𝐹))
35 dgrcl 26209 . . . . . . . . . . 11 (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈ ℕ0)
3611, 35syl 17 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℕ0)
3736nn0red 12571 . . . . . . . . 9 (𝜑 → (deg‘𝐺) ∈ ℝ)
3837recnd 11271 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℂ)
3938addlidd 11444 . . . . . . 7 (𝜑 → (0 + (deg‘𝐺)) = (deg‘𝐺))
4039eqcomd 2740 . . . . . 6 (𝜑 → (deg‘𝐺) = (0 + (deg‘𝐺)))
4134, 40breq12d 5136 . . . . 5 (𝜑 → ((deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺) ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
42 dgrcl 26209 . . . . . . . 8 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
431, 42syl 17 . . . . . . 7 (𝜑 → (deg‘𝐹) ∈ ℕ0)
4443nn0red 12571 . . . . . 6 (𝜑 → (deg‘𝐹) ∈ ℝ)
45 0red 11246 . . . . . 6 (𝜑 → 0 ∈ ℝ)
4644, 37, 45ltsubaddd 11841 . . . . 5 (𝜑 → (((deg‘𝐹) − (deg‘𝐺)) < 0 ↔ (deg‘𝐹) < (0 + (deg‘𝐺))))
4741, 46bitr4d 282 . . . 4 (𝜑 → ((deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺) ↔ ((deg‘𝐹) − (deg‘𝐺)) < 0))
4833, 47orbi12d 918 . . 3 (𝜑 → (((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)) ↔ (𝐹 = 0𝑝 ∨ ((deg‘𝐹) − (deg‘𝐺)) < 0)))
495, 48mpbird 257 . 2 (𝜑 → ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)))
50 plydiv.r . . . . . 6 𝑅 = (𝐹f − (𝐺f · 𝑞))
51 oveq2 7421 . . . . . . 7 (𝑞 = 0𝑝 → (𝐺f · 𝑞) = (𝐺f · 0𝑝))
5251oveq2d 7429 . . . . . 6 (𝑞 = 0𝑝 → (𝐹f − (𝐺f · 𝑞)) = (𝐹f − (𝐺f · 0𝑝)))
5350, 52eqtrid 2781 . . . . 5 (𝑞 = 0𝑝𝑅 = (𝐹f − (𝐺f · 0𝑝)))
5453eqeq1d 2736 . . . 4 (𝑞 = 0𝑝 → (𝑅 = 0𝑝 ↔ (𝐹f − (𝐺f · 0𝑝)) = 0𝑝))
5553fveq2d 6890 . . . . 5 (𝑞 = 0𝑝 → (deg‘𝑅) = (deg‘(𝐹f − (𝐺f · 0𝑝))))
5655breq1d 5133 . . . 4 (𝑞 = 0𝑝 → ((deg‘𝑅) < (deg‘𝐺) ↔ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺)))
5754, 56orbi12d 918 . . 3 (𝑞 = 0𝑝 → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)) ↔ ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺))))
5857rspcev 3605 . 2 ((0𝑝 ∈ (Poly‘𝑆) ∧ ((𝐹f − (𝐺f · 0𝑝)) = 0𝑝 ∨ (deg‘(𝐹f − (𝐺f · 0𝑝))) < (deg‘𝐺))) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
594, 49, 58syl2anc 584 1 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1539  wcel 2107  wne 2931  wrex 3059  Vcvv 3463  wss 3931   class class class wbr 5123   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7413  f cof 7677  cc 11135  0cc0 11137  1c1 11138   + caddc 11140   · cmul 11142   < clt 11277  cmin 11474  -cneg 11475   / cdiv 11902  0cn0 12509  0𝑝c0p 25641  Polycply 26160  degcdgr 26163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-of 7679  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-map 8850  df-pm 8851  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-inf 9465  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14353  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-sum 15706  df-0p 25642  df-ply 26164  df-coe 26166  df-dgr 26167
This theorem is referenced by:  plydivex  26276
  Copyright terms: Public domain W3C validator