Step | Hyp | Ref
| Expression |
1 | | plydiv.f |
. . 3
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
2 | | plybss 25260 |
. . 3
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
3 | | ply0 25274 |
. . 3
⊢ (𝑆 ⊆ ℂ →
0𝑝 ∈ (Poly‘𝑆)) |
4 | 1, 2, 3 | 3syl 18 |
. 2
⊢ (𝜑 → 0𝑝
∈ (Poly‘𝑆)) |
5 | | plydiv.0 |
. . 3
⊢ (𝜑 → (𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) <
0)) |
6 | | cnex 10883 |
. . . . . . 7
⊢ ℂ
∈ V |
7 | 6 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℂ ∈
V) |
8 | | plyf 25264 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
9 | | ffn 6584 |
. . . . . . 7
⊢ (𝐹:ℂ⟶ℂ →
𝐹 Fn
ℂ) |
10 | 1, 8, 9 | 3syl 18 |
. . . . . 6
⊢ (𝜑 → 𝐹 Fn ℂ) |
11 | | plydiv.g |
. . . . . . . 8
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
12 | | plyf 25264 |
. . . . . . . 8
⊢ (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ) |
13 | | ffn 6584 |
. . . . . . . 8
⊢ (𝐺:ℂ⟶ℂ →
𝐺 Fn
ℂ) |
14 | 11, 12, 13 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 𝐺 Fn ℂ) |
15 | | plyf 25264 |
. . . . . . . 8
⊢
(0𝑝 ∈ (Poly‘𝑆) →
0𝑝:ℂ⟶ℂ) |
16 | | ffn 6584 |
. . . . . . . 8
⊢
(0𝑝:ℂ⟶ℂ →
0𝑝 Fn ℂ) |
17 | 4, 15, 16 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → 0𝑝 Fn
ℂ) |
18 | | inidm 4149 |
. . . . . . 7
⊢ (ℂ
∩ ℂ) = ℂ |
19 | 14, 17, 7, 7, 18 | offn 7524 |
. . . . . 6
⊢ (𝜑 → (𝐺 ∘f ·
0𝑝) Fn ℂ) |
20 | | eqidd 2739 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
21 | | eqidd 2739 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
22 | | 0pval 24740 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℂ →
(0𝑝‘𝑧) = 0) |
23 | 22 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) →
(0𝑝‘𝑧) = 0) |
24 | 14, 17, 7, 7, 18, 21, 23 | ofval 7522 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺 ∘f ·
0𝑝)‘𝑧) = ((𝐺‘𝑧) · 0)) |
25 | 11, 12 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺:ℂ⟶ℂ) |
26 | 25 | ffvelrnda 6943 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐺‘𝑧) ∈ ℂ) |
27 | 26 | mul01d 11104 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺‘𝑧) · 0) = 0) |
28 | 24, 27 | eqtrd 2778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐺 ∘f ·
0𝑝)‘𝑧) = 0) |
29 | 1, 8 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:ℂ⟶ℂ) |
30 | 29 | ffvelrnda 6943 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐹‘𝑧) ∈ ℂ) |
31 | 30 | subid1d 11251 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → ((𝐹‘𝑧) − 0) = (𝐹‘𝑧)) |
32 | 7, 10, 19, 10, 20, 28, 31 | offveq 7535 |
. . . . 5
⊢ (𝜑 → (𝐹 ∘f − (𝐺 ∘f ·
0𝑝)) = 𝐹) |
33 | 32 | eqeq1d 2740 |
. . . 4
⊢ (𝜑 → ((𝐹 ∘f − (𝐺 ∘f ·
0𝑝)) = 0𝑝 ↔ 𝐹 = 0𝑝)) |
34 | 32 | fveq2d 6760 |
. . . . . 6
⊢ (𝜑 → (deg‘(𝐹 ∘f −
(𝐺 ∘f
· 0𝑝))) = (deg‘𝐹)) |
35 | | dgrcl 25299 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ (Poly‘𝑆) → (deg‘𝐺) ∈
ℕ0) |
36 | 11, 35 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) |
37 | 36 | nn0red 12224 |
. . . . . . . . 9
⊢ (𝜑 → (deg‘𝐺) ∈
ℝ) |
38 | 37 | recnd 10934 |
. . . . . . . 8
⊢ (𝜑 → (deg‘𝐺) ∈
ℂ) |
39 | 38 | addid2d 11106 |
. . . . . . 7
⊢ (𝜑 → (0 + (deg‘𝐺)) = (deg‘𝐺)) |
40 | 39 | eqcomd 2744 |
. . . . . 6
⊢ (𝜑 → (deg‘𝐺) = (0 + (deg‘𝐺))) |
41 | 34, 40 | breq12d 5083 |
. . . . 5
⊢ (𝜑 → ((deg‘(𝐹 ∘f −
(𝐺 ∘f
· 0𝑝))) < (deg‘𝐺) ↔ (deg‘𝐹) < (0 + (deg‘𝐺)))) |
42 | | dgrcl 25299 |
. . . . . . . 8
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
43 | 1, 42 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (deg‘𝐹) ∈
ℕ0) |
44 | 43 | nn0red 12224 |
. . . . . 6
⊢ (𝜑 → (deg‘𝐹) ∈
ℝ) |
45 | | 0red 10909 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℝ) |
46 | 44, 37, 45 | ltsubaddd 11501 |
. . . . 5
⊢ (𝜑 → (((deg‘𝐹) − (deg‘𝐺)) < 0 ↔
(deg‘𝐹) < (0 +
(deg‘𝐺)))) |
47 | 41, 46 | bitr4d 281 |
. . . 4
⊢ (𝜑 → ((deg‘(𝐹 ∘f −
(𝐺 ∘f
· 0𝑝))) < (deg‘𝐺) ↔ ((deg‘𝐹) − (deg‘𝐺)) < 0)) |
48 | 33, 47 | orbi12d 915 |
. . 3
⊢ (𝜑 → (((𝐹 ∘f − (𝐺 ∘f ·
0𝑝)) = 0𝑝 ∨ (deg‘(𝐹 ∘f −
(𝐺 ∘f
· 0𝑝))) < (deg‘𝐺)) ↔ (𝐹 = 0𝑝 ∨
((deg‘𝐹) −
(deg‘𝐺)) <
0))) |
49 | 5, 48 | mpbird 256 |
. 2
⊢ (𝜑 → ((𝐹 ∘f − (𝐺 ∘f ·
0𝑝)) = 0𝑝 ∨ (deg‘(𝐹 ∘f −
(𝐺 ∘f
· 0𝑝))) < (deg‘𝐺))) |
50 | | plydiv.r |
. . . . . 6
⊢ 𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
𝑞)) |
51 | | oveq2 7263 |
. . . . . . 7
⊢ (𝑞 = 0𝑝 →
(𝐺 ∘f
· 𝑞) = (𝐺 ∘f ·
0𝑝)) |
52 | 51 | oveq2d 7271 |
. . . . . 6
⊢ (𝑞 = 0𝑝 →
(𝐹 ∘f
− (𝐺
∘f · 𝑞)) = (𝐹 ∘f − (𝐺 ∘f ·
0𝑝))) |
53 | 50, 52 | syl5eq 2791 |
. . . . 5
⊢ (𝑞 = 0𝑝 →
𝑅 = (𝐹 ∘f − (𝐺 ∘f ·
0𝑝))) |
54 | 53 | eqeq1d 2740 |
. . . 4
⊢ (𝑞 = 0𝑝 →
(𝑅 = 0𝑝
↔ (𝐹
∘f − (𝐺 ∘f ·
0𝑝)) = 0𝑝)) |
55 | 53 | fveq2d 6760 |
. . . . 5
⊢ (𝑞 = 0𝑝 →
(deg‘𝑅) =
(deg‘(𝐹
∘f − (𝐺 ∘f ·
0𝑝)))) |
56 | 55 | breq1d 5080 |
. . . 4
⊢ (𝑞 = 0𝑝 →
((deg‘𝑅) <
(deg‘𝐺) ↔
(deg‘(𝐹
∘f − (𝐺 ∘f ·
0𝑝))) < (deg‘𝐺))) |
57 | 54, 56 | orbi12d 915 |
. . 3
⊢ (𝑞 = 0𝑝 →
((𝑅 = 0𝑝
∨ (deg‘𝑅) <
(deg‘𝐺)) ↔
((𝐹 ∘f
− (𝐺
∘f · 0𝑝)) = 0𝑝
∨ (deg‘(𝐹
∘f − (𝐺 ∘f ·
0𝑝))) < (deg‘𝐺)))) |
58 | 57 | rspcev 3552 |
. 2
⊢
((0𝑝 ∈ (Poly‘𝑆) ∧ ((𝐹 ∘f − (𝐺 ∘f ·
0𝑝)) = 0𝑝 ∨ (deg‘(𝐹 ∘f −
(𝐺 ∘f
· 0𝑝))) < (deg‘𝐺))) → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |
59 | 4, 49, 58 | syl2anc 583 |
1
⊢ (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)(𝑅 = 0𝑝 ∨
(deg‘𝑅) <
(deg‘𝐺))) |