Proof of Theorem coeidlem
Step | Hyp | Ref
| Expression |
1 | | coeid.7 |
. 2
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
2 | | dgrub.1 |
. . . . . . 7
⊢ 𝐴 = (coeff‘𝐹) |
3 | | coeid.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
4 | | coeid.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
5 | | coeid.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
6 | | plybss 25355 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
7 | 3, 6 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | | 0cnd 10968 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℂ) |
9 | 8 | snssd 4742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {0} ⊆
ℂ) |
10 | 7, 9 | unssd 4120 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
11 | | cnex 10952 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
12 | | ssexg 5247 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) |
13 | 10, 11, 12 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
14 | | nn0ex 12239 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
15 | | elmapg 8628 |
. . . . . . . . . . 11
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
16 | 13, 14, 15 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
17 | 5, 16 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
18 | 17, 10 | fssd 6618 |
. . . . . . . 8
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
19 | | coeid.6 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
20 | 3, 4, 18, 19, 1 | coeeq 25388 |
. . . . . . 7
⊢ (𝜑 → (coeff‘𝐹) = 𝐵) |
21 | 2, 20 | eqtr2id 2791 |
. . . . . 6
⊢ (𝜑 → 𝐵 = 𝐴) |
22 | 21 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵 = 𝐴) |
23 | | fveq1 6773 |
. . . . . . 7
⊢ (𝐵 = 𝐴 → (𝐵‘𝑘) = (𝐴‘𝑘)) |
24 | 23 | oveq1d 7290 |
. . . . . 6
⊢ (𝐵 = 𝐴 → ((𝐵‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑧↑𝑘))) |
25 | 24 | sumeq2sdv 15416 |
. . . . 5
⊢ (𝐵 = 𝐴 → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
26 | 22, 25 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
27 | 3 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆)) |
28 | | dgrub.2 |
. . . . . . . . . 10
⊢ 𝑁 = (deg‘𝐹) |
29 | | dgrcl 25394 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
30 | 28, 29 | eqeltrid 2843 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) |
31 | 27, 30 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈
ℕ0) |
32 | 31 | nn0zd 12424 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) |
33 | 4 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈
ℕ0) |
34 | 33 | nn0zd 12424 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈ ℤ) |
35 | 22 | imaeq1d 5968 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = (𝐴 “
(ℤ≥‘(𝑀 + 1)))) |
36 | 19 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
37 | 35, 36 | eqtr3d 2780 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
38 | 2, 28 | dgrlb 25397 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ≤ 𝑀) |
39 | 27, 33, 37, 38 | syl3anc 1370 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ≤ 𝑀) |
40 | | eluz2 12588 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀)) |
41 | 32, 34, 39, 40 | syl3anbrc 1342 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈ (ℤ≥‘𝑁)) |
42 | | fzss2 13296 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...𝑀)) |
43 | 41, 42 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀)) |
44 | | elfznn0 13349 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
45 | | plyssc 25361 |
. . . . . . . . . . 11
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
46 | 45, 3 | sselid 3919 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℂ)) |
47 | 2 | coef3 25393 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘ℂ)
→ 𝐴:ℕ0⟶ℂ) |
48 | 46, 47 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
49 | 48 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
50 | 49 | ffvelrnda 6961 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
51 | | expcl 13800 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
52 | 51 | adantll 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
53 | 50, 52 | mulcld 10995 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
54 | 44, 53 | sylan2 593 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
55 | | eldifn 4062 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁)) |
56 | 55 | adantl 482 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁)) |
57 | | eldifi 4061 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀)) |
58 | | elfznn0 13349 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0) |
60 | 2, 28 | dgrub 25395 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑁) |
61 | 60 | 3expia 1120 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
62 | 27, 59, 61 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
63 | | elfzuz 13252 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈
(ℤ≥‘0)) |
64 | 57, 63 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈
(ℤ≥‘0)) |
65 | | elfz5 13248 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
66 | 64, 32, 65 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
67 | 62, 66 | sylibrd 258 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁))) |
68 | 67 | necon1bd 2961 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴‘𝑘) = 0)) |
69 | 56, 68 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴‘𝑘) = 0) |
70 | 69 | oveq1d 7290 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
71 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) |
72 | 71, 59, 51 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
73 | 72 | mul02d 11173 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
74 | 70, 73 | eqtrd 2778 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
75 | | fzfid 13693 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) |
76 | 43, 54, 74, 75 | fsumss 15437 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
77 | 26, 76 | eqtr4d 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) |
78 | 77 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
79 | 1, 78 | eqtrd 2778 |
1
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |