Proof of Theorem coeidlem
| Step | Hyp | Ref
| Expression |
| 1 | | coeid.7 |
. 2
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
| 2 | | dgrub.1 |
. . . . . . 7
⊢ 𝐴 = (coeff‘𝐹) |
| 3 | | coeid.3 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 4 | | coeid.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 5 | | coeid.5 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) |
| 6 | | plybss 26156 |
. . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| 7 | 3, 6 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 8 | | 0cnd 11233 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℂ) |
| 9 | 8 | snssd 4790 |
. . . . . . . . . . . . 13
⊢ (𝜑 → {0} ⊆
ℂ) |
| 10 | 7, 9 | unssd 4172 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 11 | | cnex 11215 |
. . . . . . . . . . . 12
⊢ ℂ
∈ V |
| 12 | | ssexg 5298 |
. . . . . . . . . . . 12
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) |
| 13 | 10, 11, 12 | sylancl 586 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
| 14 | | nn0ex 12512 |
. . . . . . . . . . 11
⊢
ℕ0 ∈ V |
| 15 | | elmapg 8858 |
. . . . . . . . . . 11
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 16 | 13, 14, 15 | sylancl 586 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
| 17 | 5, 16 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
| 18 | 17, 10 | fssd 6728 |
. . . . . . . 8
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
| 19 | | coeid.6 |
. . . . . . . 8
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 20 | 3, 4, 18, 19, 1 | coeeq 26189 |
. . . . . . 7
⊢ (𝜑 → (coeff‘𝐹) = 𝐵) |
| 21 | 2, 20 | eqtr2id 2784 |
. . . . . 6
⊢ (𝜑 → 𝐵 = 𝐴) |
| 22 | 21 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵 = 𝐴) |
| 23 | | fveq1 6880 |
. . . . . . 7
⊢ (𝐵 = 𝐴 → (𝐵‘𝑘) = (𝐴‘𝑘)) |
| 24 | 23 | oveq1d 7425 |
. . . . . 6
⊢ (𝐵 = 𝐴 → ((𝐵‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 25 | 24 | sumeq2sdv 15724 |
. . . . 5
⊢ (𝐵 = 𝐴 → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 26 | 22, 25 | syl 17 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 27 | 3 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆)) |
| 28 | | dgrub.2 |
. . . . . . . . . 10
⊢ 𝑁 = (deg‘𝐹) |
| 29 | | dgrcl 26195 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
| 30 | 28, 29 | eqeltrid 2839 |
. . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) |
| 31 | 27, 30 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈
ℕ0) |
| 32 | 31 | nn0zd 12619 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) |
| 33 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈
ℕ0) |
| 34 | 33 | nn0zd 12619 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈ ℤ) |
| 35 | 22 | imaeq1d 6051 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = (𝐴 “
(ℤ≥‘(𝑀 + 1)))) |
| 36 | 19 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 37 | 35, 36 | eqtr3d 2773 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) |
| 38 | 2, 28 | dgrlb 26198 |
. . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ≤ 𝑀) |
| 39 | 27, 33, 37, 38 | syl3anc 1373 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ≤ 𝑀) |
| 40 | | eluz2 12863 |
. . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀)) |
| 41 | 32, 34, 39, 40 | syl3anbrc 1344 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈ (ℤ≥‘𝑁)) |
| 42 | | fzss2 13586 |
. . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...𝑀)) |
| 43 | 41, 42 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀)) |
| 44 | | elfznn0 13642 |
. . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) |
| 45 | | plyssc 26162 |
. . . . . . . . . . 11
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) |
| 46 | 45, 3 | sselid 3961 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℂ)) |
| 47 | 2 | coef3 26194 |
. . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘ℂ)
→ 𝐴:ℕ0⟶ℂ) |
| 48 | 46, 47 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
| 49 | 48 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) |
| 50 | 49 | ffvelcdmda 7079 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) |
| 51 | | expcl 14102 |
. . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) |
| 52 | 51 | adantll 714 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) |
| 53 | 50, 52 | mulcld 11260 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 54 | 44, 53 | sylan2 593 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 55 | | eldifn 4112 |
. . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁)) |
| 56 | 55 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁)) |
| 57 | | eldifi 4111 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀)) |
| 58 | | elfznn0 13642 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0) |
| 60 | 2, 28 | dgrub 26196 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑁) |
| 61 | 60 | 3expia 1121 |
. . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 62 | 27, 59, 61 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) |
| 63 | | elfzuz 13542 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈
(ℤ≥‘0)) |
| 64 | 57, 63 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈
(ℤ≥‘0)) |
| 65 | | elfz5 13538 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
| 66 | 64, 32, 65 | syl2anr 597 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) |
| 67 | 62, 66 | sylibrd 259 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁))) |
| 68 | 67 | necon1bd 2951 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴‘𝑘) = 0)) |
| 69 | 56, 68 | mpd 15 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴‘𝑘) = 0) |
| 70 | 69 | oveq1d 7425 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) |
| 71 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) |
| 72 | 71, 59, 51 | syl2an 596 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑧↑𝑘) ∈ ℂ) |
| 73 | 72 | mul02d 11438 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑧↑𝑘)) = 0) |
| 74 | 70, 73 | eqtrd 2771 |
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) |
| 75 | | fzfid 13996 |
. . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) |
| 76 | 43, 54, 74, 75 | fsumss 15746 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 77 | 26, 76 | eqtr4d 2774 |
. . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) |
| 78 | 77 | mpteq2dva 5219 |
. 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
| 79 | 1, 78 | eqtrd 2771 |
1
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |