Step | Hyp | Ref
| Expression |
1 | | coeid.7 |
. 2
β’ (π β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΅βπ) Β· (π§βπ)))) |
2 | | dgrub.1 |
. . . . . . 7
β’ π΄ = (coeffβπΉ) |
3 | | coeid.3 |
. . . . . . . 8
β’ (π β πΉ β (Polyβπ)) |
4 | | coeid.4 |
. . . . . . . 8
β’ (π β π β
β0) |
5 | | coeid.5 |
. . . . . . . . . 10
β’ (π β π΅ β ((π βͺ {0}) βm
β0)) |
6 | | plybss 25932 |
. . . . . . . . . . . . . 14
β’ (πΉ β (Polyβπ) β π β β) |
7 | 3, 6 | syl 17 |
. . . . . . . . . . . . 13
β’ (π β π β β) |
8 | | 0cnd 11211 |
. . . . . . . . . . . . . 14
β’ (π β 0 β
β) |
9 | 8 | snssd 4812 |
. . . . . . . . . . . . 13
β’ (π β {0} β
β) |
10 | 7, 9 | unssd 4186 |
. . . . . . . . . . . 12
β’ (π β (π βͺ {0}) β
β) |
11 | | cnex 11193 |
. . . . . . . . . . . 12
β’ β
β V |
12 | | ssexg 5323 |
. . . . . . . . . . . 12
β’ (((π βͺ {0}) β β
β§ β β V) β (π βͺ {0}) β V) |
13 | 10, 11, 12 | sylancl 586 |
. . . . . . . . . . 11
β’ (π β (π βͺ {0}) β V) |
14 | | nn0ex 12482 |
. . . . . . . . . . 11
β’
β0 β V |
15 | | elmapg 8835 |
. . . . . . . . . . 11
β’ (((π βͺ {0}) β V β§
β0 β V) β (π΅ β ((π βͺ {0}) βm
β0) β π΅:β0βΆ(π βͺ {0}))) |
16 | 13, 14, 15 | sylancl 586 |
. . . . . . . . . 10
β’ (π β (π΅ β ((π βͺ {0}) βm
β0) β π΅:β0βΆ(π βͺ {0}))) |
17 | 5, 16 | mpbid 231 |
. . . . . . . . 9
β’ (π β π΅:β0βΆ(π βͺ {0})) |
18 | 17, 10 | fssd 6735 |
. . . . . . . 8
β’ (π β π΅:β0βΆβ) |
19 | | coeid.6 |
. . . . . . . 8
β’ (π β (π΅ β
(β€β₯β(π + 1))) = {0}) |
20 | 3, 4, 18, 19, 1 | coeeq 25965 |
. . . . . . 7
β’ (π β (coeffβπΉ) = π΅) |
21 | 2, 20 | eqtr2id 2785 |
. . . . . 6
β’ (π β π΅ = π΄) |
22 | 21 | adantr 481 |
. . . . 5
β’ ((π β§ π§ β β) β π΅ = π΄) |
23 | | fveq1 6890 |
. . . . . . 7
β’ (π΅ = π΄ β (π΅βπ) = (π΄βπ)) |
24 | 23 | oveq1d 7426 |
. . . . . 6
β’ (π΅ = π΄ β ((π΅βπ) Β· (π§βπ)) = ((π΄βπ) Β· (π§βπ))) |
25 | 24 | sumeq2sdv 15654 |
. . . . 5
β’ (π΅ = π΄ β Ξ£π β (0...π)((π΅βπ) Β· (π§βπ)) = Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))) |
26 | 22, 25 | syl 17 |
. . . 4
β’ ((π β§ π§ β β) β Ξ£π β (0...π)((π΅βπ) Β· (π§βπ)) = Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))) |
27 | 3 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π§ β β) β πΉ β (Polyβπ)) |
28 | | dgrub.2 |
. . . . . . . . . 10
β’ π = (degβπΉ) |
29 | | dgrcl 25971 |
. . . . . . . . . 10
β’ (πΉ β (Polyβπ) β (degβπΉ) β
β0) |
30 | 28, 29 | eqeltrid 2837 |
. . . . . . . . 9
β’ (πΉ β (Polyβπ) β π β
β0) |
31 | 27, 30 | syl 17 |
. . . . . . . 8
β’ ((π β§ π§ β β) β π β
β0) |
32 | 31 | nn0zd 12588 |
. . . . . . 7
β’ ((π β§ π§ β β) β π β β€) |
33 | 4 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π§ β β) β π β
β0) |
34 | 33 | nn0zd 12588 |
. . . . . . 7
β’ ((π β§ π§ β β) β π β β€) |
35 | 22 | imaeq1d 6058 |
. . . . . . . . 9
β’ ((π β§ π§ β β) β (π΅ β
(β€β₯β(π + 1))) = (π΄ β
(β€β₯β(π + 1)))) |
36 | 19 | adantr 481 |
. . . . . . . . 9
β’ ((π β§ π§ β β) β (π΅ β
(β€β₯β(π + 1))) = {0}) |
37 | 35, 36 | eqtr3d 2774 |
. . . . . . . 8
β’ ((π β§ π§ β β) β (π΄ β
(β€β₯β(π + 1))) = {0}) |
38 | 2, 28 | dgrlb 25974 |
. . . . . . . 8
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄ β
(β€β₯β(π + 1))) = {0}) β π β€ π) |
39 | 27, 33, 37, 38 | syl3anc 1371 |
. . . . . . 7
β’ ((π β§ π§ β β) β π β€ π) |
40 | | eluz2 12832 |
. . . . . . 7
β’ (π β
(β€β₯βπ) β (π β β€ β§ π β β€ β§ π β€ π)) |
41 | 32, 34, 39, 40 | syl3anbrc 1343 |
. . . . . 6
β’ ((π β§ π§ β β) β π β (β€β₯βπ)) |
42 | | fzss2 13545 |
. . . . . 6
β’ (π β
(β€β₯βπ) β (0...π) β (0...π)) |
43 | 41, 42 | syl 17 |
. . . . 5
β’ ((π β§ π§ β β) β (0...π) β (0...π)) |
44 | | elfznn0 13598 |
. . . . . 6
β’ (π β (0...π) β π β β0) |
45 | | plyssc 25938 |
. . . . . . . . . . 11
β’
(Polyβπ)
β (Polyββ) |
46 | 45, 3 | sselid 3980 |
. . . . . . . . . 10
β’ (π β πΉ β
(Polyββ)) |
47 | 2 | coef3 25970 |
. . . . . . . . . 10
β’ (πΉ β (Polyββ)
β π΄:β0βΆβ) |
48 | 46, 47 | syl 17 |
. . . . . . . . 9
β’ (π β π΄:β0βΆβ) |
49 | 48 | adantr 481 |
. . . . . . . 8
β’ ((π β§ π§ β β) β π΄:β0βΆβ) |
50 | 49 | ffvelcdmda 7086 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β β0) β (π΄βπ) β β) |
51 | | expcl 14049 |
. . . . . . . 8
β’ ((π§ β β β§ π β β0)
β (π§βπ) β
β) |
52 | 51 | adantll 712 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β β0) β (π§βπ) β β) |
53 | 50, 52 | mulcld 11238 |
. . . . . 6
β’ (((π β§ π§ β β) β§ π β β0) β ((π΄βπ) Β· (π§βπ)) β β) |
54 | 44, 53 | sylan2 593 |
. . . . 5
β’ (((π β§ π§ β β) β§ π β (0...π)) β ((π΄βπ) Β· (π§βπ)) β β) |
55 | | eldifn 4127 |
. . . . . . . . 9
β’ (π β ((0...π) β (0...π)) β Β¬ π β (0...π)) |
56 | 55 | adantl 482 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β Β¬ π β (0...π)) |
57 | | eldifi 4126 |
. . . . . . . . . . . 12
β’ (π β ((0...π) β (0...π)) β π β (0...π)) |
58 | | elfznn0 13598 |
. . . . . . . . . . . 12
β’ (π β (0...π) β π β β0) |
59 | 57, 58 | syl 17 |
. . . . . . . . . . 11
β’ (π β ((0...π) β (0...π)) β π β β0) |
60 | 2, 28 | dgrub 25972 |
. . . . . . . . . . . 12
β’ ((πΉ β (Polyβπ) β§ π β β0 β§ (π΄βπ) β 0) β π β€ π) |
61 | 60 | 3expia 1121 |
. . . . . . . . . . 11
β’ ((πΉ β (Polyβπ) β§ π β β0) β ((π΄βπ) β 0 β π β€ π)) |
62 | 27, 59, 61 | syl2an 596 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β ((π΄βπ) β 0 β π β€ π)) |
63 | | elfzuz 13501 |
. . . . . . . . . . . 12
β’ (π β (0...π) β π β
(β€β₯β0)) |
64 | 57, 63 | syl 17 |
. . . . . . . . . . 11
β’ (π β ((0...π) β (0...π)) β π β
(β€β₯β0)) |
65 | | elfz5 13497 |
. . . . . . . . . . 11
β’ ((π β
(β€β₯β0) β§ π β β€) β (π β (0...π) β π β€ π)) |
66 | 64, 32, 65 | syl2anr 597 |
. . . . . . . . . 10
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β (π β (0...π) β π β€ π)) |
67 | 62, 66 | sylibrd 258 |
. . . . . . . . 9
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β ((π΄βπ) β 0 β π β (0...π))) |
68 | 67 | necon1bd 2958 |
. . . . . . . 8
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β (Β¬ π β (0...π) β (π΄βπ) = 0)) |
69 | 56, 68 | mpd 15 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β (π΄βπ) = 0) |
70 | 69 | oveq1d 7426 |
. . . . . 6
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β ((π΄βπ) Β· (π§βπ)) = (0 Β· (π§βπ))) |
71 | | simpr 485 |
. . . . . . . 8
β’ ((π β§ π§ β β) β π§ β β) |
72 | 71, 59, 51 | syl2an 596 |
. . . . . . 7
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β (π§βπ) β β) |
73 | 72 | mul02d 11416 |
. . . . . 6
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β (0 Β· (π§βπ)) = 0) |
74 | 70, 73 | eqtrd 2772 |
. . . . 5
β’ (((π β§ π§ β β) β§ π β ((0...π) β (0...π))) β ((π΄βπ) Β· (π§βπ)) = 0) |
75 | | fzfid 13942 |
. . . . 5
β’ ((π β§ π§ β β) β (0...π) β Fin) |
76 | 43, 54, 74, 75 | fsumss 15675 |
. . . 4
β’ ((π β§ π§ β β) β Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)) = Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))) |
77 | 26, 76 | eqtr4d 2775 |
. . 3
β’ ((π β§ π§ β β) β Ξ£π β (0...π)((π΅βπ) Β· (π§βπ)) = Ξ£π β (0...π)((π΄βπ) Β· (π§βπ))) |
78 | 77 | mpteq2dva 5248 |
. 2
β’ (π β (π§ β β β¦ Ξ£π β (0...π)((π΅βπ) Β· (π§βπ))) = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |
79 | 1, 78 | eqtrd 2772 |
1
β’ (π β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |