MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeidlem Structured version   Visualization version   GIF version

Theorem coeidlem 26296
Description: Lemma for coeid 26297. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
coeid.3 (𝜑𝐹 ∈ (Poly‘𝑆))
coeid.4 (𝜑𝑀 ∈ ℕ0)
coeid.5 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑m0))
coeid.6 (𝜑 → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
coeid.7 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeidlem (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧   𝐵,𝑘,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem coeidlem
StepHypRef Expression
1 coeid.7 . 2 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))))
2 dgrub.1 . . . . . . 7 𝐴 = (coeff‘𝐹)
3 coeid.3 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
4 coeid.4 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
5 coeid.5 . . . . . . . . . 10 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑m0))
6 plybss 26253 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
73, 6syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
8 0cnd 11283 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
98snssd 4834 . . . . . . . . . . . . 13 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 4215 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 11265 . . . . . . . . . . . 12 ℂ ∈ V
12 ssexg 5341 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 585 . . . . . . . . . . 11 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 12559 . . . . . . . . . . 11 0 ∈ V
15 elmapg 8897 . . . . . . . . . . 11 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 585 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 232 . . . . . . . . 9 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 6764 . . . . . . . 8 (𝜑𝐵:ℕ0⟶ℂ)
19 coeid.6 . . . . . . . 8 (𝜑 → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
203, 4, 18, 19, 1coeeq 26286 . . . . . . 7 (𝜑 → (coeff‘𝐹) = 𝐵)
212, 20eqtr2id 2793 . . . . . 6 (𝜑𝐵 = 𝐴)
2221adantr 480 . . . . 5 ((𝜑𝑧 ∈ ℂ) → 𝐵 = 𝐴)
23 fveq1 6919 . . . . . . 7 (𝐵 = 𝐴 → (𝐵𝑘) = (𝐴𝑘))
2423oveq1d 7463 . . . . . 6 (𝐵 = 𝐴 → ((𝐵𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2524sumeq2sdv 15751 . . . . 5 (𝐵 = 𝐴 → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
2622, 25syl 17 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
273adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
28 dgrub.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
29 dgrcl 26292 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3028, 29eqeltrid 2848 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
3127, 30syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
3231nn0zd 12665 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
334adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ ℕ0)
3433nn0zd 12665 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ ℤ)
3522imaeq1d 6088 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐵 “ (ℤ‘(𝑀 + 1))) = (𝐴 “ (ℤ‘(𝑀 + 1))))
3619adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
3735, 36eqtr3d 2782 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
382, 28dgrlb 26295 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)
3927, 33, 37, 38syl3anc 1371 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁𝑀)
40 eluz2 12909 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
4132, 34, 39, 40syl3anbrc 1343 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ (ℤ𝑁))
42 fzss2 13624 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...𝑀))
4341, 42syl 17 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀))
44 elfznn0 13677 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
45 plyssc 26259 . . . . . . . . . . 11 (Poly‘𝑆) ⊆ (Poly‘ℂ)
4645, 3sselid 4006 . . . . . . . . . 10 (𝜑𝐹 ∈ (Poly‘ℂ))
472coef3 26291 . . . . . . . . . 10 (𝐹 ∈ (Poly‘ℂ) → 𝐴:ℕ0⟶ℂ)
4846, 47syl 17 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
4948adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
5049ffvelcdmda 7118 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
51 expcl 14130 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
5251adantll 713 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
5350, 52mulcld 11310 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
5444, 53sylan2 592 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
55 eldifn 4155 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
5655adantl 481 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
57 eldifi 4154 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀))
58 elfznn0 13677 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
602, 28dgrub 26293 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
61603expia 1121 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
6227, 59, 61syl2an 595 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
63 elfzuz 13580 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘0))
6457, 63syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (ℤ‘0))
65 elfz5 13576 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
6664, 32, 65syl2anr 596 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
6762, 66sylibrd 259 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
6867necon1bd 2964 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴𝑘) = 0))
6956, 68mpd 15 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴𝑘) = 0)
7069oveq1d 7463 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
71 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
7271, 59, 51syl2an 595 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑧𝑘) ∈ ℂ)
7372mul02d 11488 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑧𝑘)) = 0)
7470, 73eqtrd 2780 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑧𝑘)) = 0)
75 fzfid 14024 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin)
7643, 54, 74, 75fsumss 15773 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
7726, 76eqtr4d 2783 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
7877mpteq2dva 5266 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
791, 78eqtrd 2780 1 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  cdif 3973  cun 3974  wss 3976  {csn 4648   class class class wbr 5166  cmpt 5249  cima 5703  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  cle 11325  0cn0 12553  cz 12639  cuz 12903  ...cfz 13567  cexp 14112  Σcsu 15734  Polycply 26243  coeffccoe 26245  degcdgr 26246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-rlim 15535  df-sum 15735  df-0p 25724  df-ply 26247  df-coe 26249  df-dgr 26250
This theorem is referenced by:  coeid  26297
  Copyright terms: Public domain W3C validator