MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coeidlem Structured version   Visualization version   GIF version

Theorem coeidlem 26277
Description: Lemma for coeid 26278. (Contributed by Mario Carneiro, 22-Jul-2014.)
Hypotheses
Ref Expression
dgrub.1 𝐴 = (coeff‘𝐹)
dgrub.2 𝑁 = (deg‘𝐹)
coeid.3 (𝜑𝐹 ∈ (Poly‘𝑆))
coeid.4 (𝜑𝑀 ∈ ℕ0)
coeid.5 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑m0))
coeid.6 (𝜑 → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
coeid.7 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
coeidlem (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Distinct variable groups:   𝑧,𝑘,𝐴   𝑘,𝐹   𝜑,𝑘,𝑧   𝑆,𝑘,𝑧   𝐵,𝑘,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hint:   𝐹(𝑧)

Proof of Theorem coeidlem
StepHypRef Expression
1 coeid.7 . 2 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))))
2 dgrub.1 . . . . . . 7 𝐴 = (coeff‘𝐹)
3 coeid.3 . . . . . . . 8 (𝜑𝐹 ∈ (Poly‘𝑆))
4 coeid.4 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
5 coeid.5 . . . . . . . . . 10 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑m0))
6 plybss 26234 . . . . . . . . . . . . . 14 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
73, 6syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ⊆ ℂ)
8 0cnd 11255 . . . . . . . . . . . . . 14 (𝜑 → 0 ∈ ℂ)
98snssd 4808 . . . . . . . . . . . . 13 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 4191 . . . . . . . . . . . 12 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 11237 . . . . . . . . . . . 12 ℂ ∈ V
12 ssexg 5322 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 586 . . . . . . . . . . 11 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 12534 . . . . . . . . . . 11 0 ∈ V
15 elmapg 8880 . . . . . . . . . . 11 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 232 . . . . . . . . 9 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 6752 . . . . . . . 8 (𝜑𝐵:ℕ0⟶ℂ)
19 coeid.6 . . . . . . . 8 (𝜑 → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
203, 4, 18, 19, 1coeeq 26267 . . . . . . 7 (𝜑 → (coeff‘𝐹) = 𝐵)
212, 20eqtr2id 2789 . . . . . 6 (𝜑𝐵 = 𝐴)
2221adantr 480 . . . . 5 ((𝜑𝑧 ∈ ℂ) → 𝐵 = 𝐴)
23 fveq1 6904 . . . . . . 7 (𝐵 = 𝐴 → (𝐵𝑘) = (𝐴𝑘))
2423oveq1d 7447 . . . . . 6 (𝐵 = 𝐴 → ((𝐵𝑘) · (𝑧𝑘)) = ((𝐴𝑘) · (𝑧𝑘)))
2524sumeq2sdv 15740 . . . . 5 (𝐵 = 𝐴 → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
2622, 25syl 17 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
273adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆))
28 dgrub.2 . . . . . . . . . 10 𝑁 = (deg‘𝐹)
29 dgrcl 26273 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
3028, 29eqeltrid 2844 . . . . . . . . 9 (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈ ℕ0)
3127, 30syl 17 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℕ0)
3231nn0zd 12641 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁 ∈ ℤ)
334adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ ℕ0)
3433nn0zd 12641 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ ℤ)
3522imaeq1d 6076 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐵 “ (ℤ‘(𝑀 + 1))) = (𝐴 “ (ℤ‘(𝑀 + 1))))
3619adantr 480 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (𝐵 “ (ℤ‘(𝑀 + 1))) = {0})
3735, 36eqtr3d 2778 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
382, 28dgrlb 26276 . . . . . . . 8 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “ (ℤ‘(𝑀 + 1))) = {0}) → 𝑁𝑀)
3927, 33, 37, 38syl3anc 1372 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → 𝑁𝑀)
40 eluz2 12885 . . . . . . 7 (𝑀 ∈ (ℤ𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁𝑀))
4132, 34, 39, 40syl3anbrc 1343 . . . . . 6 ((𝜑𝑧 ∈ ℂ) → 𝑀 ∈ (ℤ𝑁))
42 fzss2 13605 . . . . . 6 (𝑀 ∈ (ℤ𝑁) → (0...𝑁) ⊆ (0...𝑀))
4341, 42syl 17 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀))
44 elfznn0 13661 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
45 plyssc 26240 . . . . . . . . . . 11 (Poly‘𝑆) ⊆ (Poly‘ℂ)
4645, 3sselid 3980 . . . . . . . . . 10 (𝜑𝐹 ∈ (Poly‘ℂ))
472coef3 26272 . . . . . . . . . 10 (𝐹 ∈ (Poly‘ℂ) → 𝐴:ℕ0⟶ℂ)
4846, 47syl 17 . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
4948adantr 480 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ)
5049ffvelcdmda 7103 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
51 expcl 14121 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
5251adantll 714 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
5350, 52mulcld 11282 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
5444, 53sylan2 593 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴𝑘) · (𝑧𝑘)) ∈ ℂ)
55 eldifn 4131 . . . . . . . . 9 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁))
5655adantl 481 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁))
57 eldifi 4130 . . . . . . . . . . . 12 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀))
58 elfznn0 13661 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0)
5957, 58syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0)
602, 28dgrub 26274 . . . . . . . . . . . 12 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴𝑘) ≠ 0) → 𝑘𝑁)
61603expia 1121 . . . . . . . . . . 11 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
6227, 59, 61syl2an 596 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘𝑁))
63 elfzuz 13561 . . . . . . . . . . . 12 (𝑘 ∈ (0...𝑀) → 𝑘 ∈ (ℤ‘0))
6457, 63syl 17 . . . . . . . . . . 11 (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (ℤ‘0))
65 elfz5 13557 . . . . . . . . . . 11 ((𝑘 ∈ (ℤ‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
6664, 32, 65syl2anr 597 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘𝑁))
6762, 66sylibrd 259 . . . . . . . . 9 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁)))
6867necon1bd 2957 . . . . . . . 8 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴𝑘) = 0))
6956, 68mpd 15 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴𝑘) = 0)
7069oveq1d 7447 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑧𝑘)) = (0 · (𝑧𝑘)))
71 simpr 484 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
7271, 59, 51syl2an 596 . . . . . . 7 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑧𝑘) ∈ ℂ)
7372mul02d 11460 . . . . . 6 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑧𝑘)) = 0)
7470, 73eqtrd 2776 . . . . 5 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴𝑘) · (𝑧𝑘)) = 0)
75 fzfid 14015 . . . . 5 ((𝜑𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin)
7643, 54, 74, 75fsumss 15762 . . . 4 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘)))
7726, 76eqtr4d 2779 . . 3 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘)))
7877mpteq2dva 5241 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
791, 78eqtrd 2776 1 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴𝑘) · (𝑧𝑘))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  cdif 3947  cun 3948  wss 3950  {csn 4625   class class class wbr 5142  cmpt 5224  cima 5687  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  cle 11297  0cn0 12528  cz 12615  cuz 12879  ...cfz 13548  cexp 14103  Σcsu 15723  Polycply 26224  coeffccoe 26226  degcdgr 26227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-inf2 9682  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-pre-sup 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-pm 8870  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-sup 9483  df-inf 9484  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-3 12331  df-n0 12529  df-z 12616  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-fl 13833  df-seq 14044  df-exp 14104  df-hash 14371  df-cj 15139  df-re 15140  df-im 15141  df-sqrt 15275  df-abs 15276  df-clim 15525  df-rlim 15526  df-sum 15724  df-0p 25706  df-ply 26228  df-coe 26230  df-dgr 26231
This theorem is referenced by:  coeid  26278
  Copyright terms: Public domain W3C validator