Proof of Theorem coeidlem
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | coeid.7 | . 2
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)))) | 
| 2 |  | dgrub.1 | . . . . . . 7
⊢ 𝐴 = (coeff‘𝐹) | 
| 3 |  | coeid.3 | . . . . . . . 8
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | 
| 4 |  | coeid.4 | . . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) | 
| 5 |  | coeid.5 | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0)) | 
| 6 |  | plybss 26234 | . . . . . . . . . . . . . 14
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | 
| 7 | 3, 6 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆 ⊆ ℂ) | 
| 8 |  | 0cnd 11255 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 0 ∈
ℂ) | 
| 9 | 8 | snssd 4808 | . . . . . . . . . . . . 13
⊢ (𝜑 → {0} ⊆
ℂ) | 
| 10 | 7, 9 | unssd 4191 | . . . . . . . . . . . 12
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) | 
| 11 |  | cnex 11237 | . . . . . . . . . . . 12
⊢ ℂ
∈ V | 
| 12 |  | ssexg 5322 | . . . . . . . . . . . 12
⊢ (((𝑆 ∪ {0}) ⊆ ℂ
∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | 
| 13 | 10, 11, 12 | sylancl 586 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) | 
| 14 |  | nn0ex 12534 | . . . . . . . . . . 11
⊢
ℕ0 ∈ V | 
| 15 |  | elmapg 8880 | . . . . . . . . . . 11
⊢ (((𝑆 ∪ {0}) ∈ V ∧
ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) | 
| 16 | 13, 14, 15 | sylancl 586 | . . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m
ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) | 
| 17 | 5, 16 | mpbid 232 | . . . . . . . . 9
⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) | 
| 18 | 17, 10 | fssd 6752 | . . . . . . . 8
⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) | 
| 19 |  | coeid.6 | . . . . . . . 8
⊢ (𝜑 → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = {0}) | 
| 20 | 3, 4, 18, 19, 1 | coeeq 26267 | . . . . . . 7
⊢ (𝜑 → (coeff‘𝐹) = 𝐵) | 
| 21 | 2, 20 | eqtr2id 2789 | . . . . . 6
⊢ (𝜑 → 𝐵 = 𝐴) | 
| 22 | 21 | adantr 480 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐵 = 𝐴) | 
| 23 |  | fveq1 6904 | . . . . . . 7
⊢ (𝐵 = 𝐴 → (𝐵‘𝑘) = (𝐴‘𝑘)) | 
| 24 | 23 | oveq1d 7447 | . . . . . 6
⊢ (𝐵 = 𝐴 → ((𝐵‘𝑘) · (𝑧↑𝑘)) = ((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 25 | 24 | sumeq2sdv 15740 | . . . . 5
⊢ (𝐵 = 𝐴 → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 26 | 22, 25 | syl 17 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 27 | 3 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐹 ∈ (Poly‘𝑆)) | 
| 28 |  | dgrub.2 | . . . . . . . . . 10
⊢ 𝑁 = (deg‘𝐹) | 
| 29 |  | dgrcl 26273 | . . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) | 
| 30 | 28, 29 | eqeltrid 2844 | . . . . . . . . 9
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑁 ∈
ℕ0) | 
| 31 | 27, 30 | syl 17 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈
ℕ0) | 
| 32 | 31 | nn0zd 12641 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ∈ ℤ) | 
| 33 | 4 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈
ℕ0) | 
| 34 | 33 | nn0zd 12641 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈ ℤ) | 
| 35 | 22 | imaeq1d 6076 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = (𝐴 “
(ℤ≥‘(𝑀 + 1)))) | 
| 36 | 19 | adantr 480 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐵 “
(ℤ≥‘(𝑀 + 1))) = {0}) | 
| 37 | 35, 36 | eqtr3d 2778 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) | 
| 38 | 2, 28 | dgrlb 26276 | . . . . . . . 8
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑀 ∈ ℕ0 ∧ (𝐴 “
(ℤ≥‘(𝑀 + 1))) = {0}) → 𝑁 ≤ 𝑀) | 
| 39 | 27, 33, 37, 38 | syl3anc 1372 | . . . . . . 7
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑁 ≤ 𝑀) | 
| 40 |  | eluz2 12885 | . . . . . . 7
⊢ (𝑀 ∈
(ℤ≥‘𝑁) ↔ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀)) | 
| 41 | 32, 34, 39, 40 | syl3anbrc 1343 | . . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑀 ∈ (ℤ≥‘𝑁)) | 
| 42 |  | fzss2 13605 | . . . . . 6
⊢ (𝑀 ∈
(ℤ≥‘𝑁) → (0...𝑁) ⊆ (0...𝑀)) | 
| 43 | 41, 42 | syl 17 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑁) ⊆ (0...𝑀)) | 
| 44 |  | elfznn0 13661 | . . . . . 6
⊢ (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0) | 
| 45 |  | plyssc 26240 | . . . . . . . . . . 11
⊢
(Poly‘𝑆)
⊆ (Poly‘ℂ) | 
| 46 | 45, 3 | sselid 3980 | . . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℂ)) | 
| 47 | 2 | coef3 26272 | . . . . . . . . . 10
⊢ (𝐹 ∈ (Poly‘ℂ)
→ 𝐴:ℕ0⟶ℂ) | 
| 48 | 46, 47 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) | 
| 49 | 48 | adantr 480 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝐴:ℕ0⟶ℂ) | 
| 50 | 49 | ffvelcdmda 7103 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴‘𝑘) ∈ ℂ) | 
| 51 |  | expcl 14121 | . . . . . . . 8
⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0)
→ (𝑧↑𝑘) ∈
ℂ) | 
| 52 | 51 | adantll 714 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) | 
| 53 | 50, 52 | mulcld 11282 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 54 | 44, 53 | sylan2 593 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝐴‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) | 
| 55 |  | eldifn 4131 | . . . . . . . . 9
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → ¬ 𝑘 ∈ (0...𝑁)) | 
| 56 | 55 | adantl 481 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ¬ 𝑘 ∈ (0...𝑁)) | 
| 57 |  | eldifi 4130 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ (0...𝑀)) | 
| 58 |  | elfznn0 13661 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈ ℕ0) | 
| 59 | 57, 58 | syl 17 | . . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈ ℕ0) | 
| 60 | 2, 28 | dgrub 26274 | . . . . . . . . . . . 12
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0 ∧ (𝐴‘𝑘) ≠ 0) → 𝑘 ≤ 𝑁) | 
| 61 | 60 | 3expia 1121 | . . . . . . . . . . 11
⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ 𝑘 ∈ ℕ0) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) | 
| 62 | 27, 59, 61 | syl2an 596 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ≤ 𝑁)) | 
| 63 |  | elfzuz 13561 | . . . . . . . . . . . 12
⊢ (𝑘 ∈ (0...𝑀) → 𝑘 ∈
(ℤ≥‘0)) | 
| 64 | 57, 63 | syl 17 | . . . . . . . . . . 11
⊢ (𝑘 ∈ ((0...𝑀) ∖ (0...𝑁)) → 𝑘 ∈
(ℤ≥‘0)) | 
| 65 |  | elfz5 13557 | . . . . . . . . . . 11
⊢ ((𝑘 ∈
(ℤ≥‘0) ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) | 
| 66 | 64, 32, 65 | syl2anr 597 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑘 ∈ (0...𝑁) ↔ 𝑘 ≤ 𝑁)) | 
| 67 | 62, 66 | sylibrd 259 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) ≠ 0 → 𝑘 ∈ (0...𝑁))) | 
| 68 | 67 | necon1bd 2957 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (¬ 𝑘 ∈ (0...𝑁) → (𝐴‘𝑘) = 0)) | 
| 69 | 56, 68 | mpd 15 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝐴‘𝑘) = 0) | 
| 70 | 69 | oveq1d 7447 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = (0 · (𝑧↑𝑘))) | 
| 71 |  | simpr 484 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | 
| 72 | 71, 59, 51 | syl2an 596 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (𝑧↑𝑘) ∈ ℂ) | 
| 73 | 72 | mul02d 11460 | . . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → (0 · (𝑧↑𝑘)) = 0) | 
| 74 | 70, 73 | eqtrd 2776 | . . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ ((0...𝑀) ∖ (0...𝑁))) → ((𝐴‘𝑘) · (𝑧↑𝑘)) = 0) | 
| 75 |  | fzfid 14015 | . . . . 5
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → (0...𝑀) ∈ Fin) | 
| 76 | 43, 54, 74, 75 | fsumss 15762 | . . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 77 | 26, 76 | eqtr4d 2779 | . . 3
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘))) | 
| 78 | 77 | mpteq2dva 5241 | . 2
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐵‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) | 
| 79 | 1, 78 | eqtrd 2776 | 1
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐴‘𝑘) · (𝑧↑𝑘)))) |