MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyf Structured version   Visualization version   GIF version

Theorem plyf 25559
Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyf (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)

Proof of Theorem plyf
Dummy variables 𝑘 𝑎 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 25556 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 497 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
3 fzfid 13878 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin)
4 plybss 25555 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
5 0cnd 11148 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℂ)
65snssd 4769 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → {0} ⊆ ℂ)
74, 6unssd 4146 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆ ℂ)
87ad2antrr 724 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ)
98adantr 481 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆ ℂ)
10 simplrr 776 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))
11 cnex 11132 . . . . . . . . . . . 12 ℂ ∈ V
12 ssexg 5280 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
138, 11, 12sylancl 586 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 12419 . . . . . . . . . . 11 0 ∈ V
15 elmapg 8778 . . . . . . . . . . 11 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 586 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1710, 16mpbid 231 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
18 elfznn0 13534 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
19 ffvelcdm 7032 . . . . . . . . 9 ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
2017, 18, 19syl2an 596 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
219, 20sseldd 3945 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
22 simpr 485 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 expcl 13985 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
2422, 18, 23syl2an 596 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧𝑘) ∈ ℂ)
2521, 24mulcld 11175 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
263, 25fsumcl 15618 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
2726fmpttd 7063 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))):ℂ⟶ℂ)
28 feq1 6649 . . . 4 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))):ℂ⟶ℂ))
2927, 28syl5ibrcom 246 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹:ℂ⟶ℂ))
3029rexlimdvva 3205 . 2 (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹:ℂ⟶ℂ))
312, 30mpd 15 1 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3073  Vcvv 3445  cun 3908  wss 3910  {csn 4586  cmpt 5188  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  0cc0 11051   · cmul 11056  0cn0 12413  ...cfz 13424  cexp 13967  Σcsu 15570  Polycply 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-sum 15571  df-ply 25549
This theorem is referenced by:  plysub  25580  plyco  25602  0dgrb  25607  coe0  25617  coesub  25618  dgrsub  25633  dgrcolem1  25634  dgrcolem2  25635  dgrco  25636  plymul0or  25641  plyreres  25643  dvply2g  25645  dvnply2  25647  plycpn  25649  plydivlem3  25655  plydivlem4  25656  plydiveu  25658  plyremlem  25664  plyrem  25665  facth  25666  fta1lem  25667  fta1  25668  quotcan  25669  vieta1lem1  25670  vieta1lem2  25671  vieta1  25672  plyexmo  25673  elaa  25676  elqaalem3  25681  aannenlem1  25688  aalioulem2  25693  aalioulem3  25694  aalioulem4  25695  taylthlem2  25733  ftalem2  26423  ftalem3  26424  ftalem4  26425  ftalem5  26426  ftalem7  26428  basellem4  26433  basellem5  26434  plymul02  33158  plymulx0  33159  signsplypnf  33162  signsply0  33163  mpaaeu  41463  rngunsnply  41486
  Copyright terms: Public domain W3C validator