![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyf | Structured version Visualization version GIF version |
Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plyf | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elply 25701 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
2 | 1 | simprbi 498 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
3 | fzfid 13935 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin) | |
4 | plybss 25700 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
5 | 0cnd 11204 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℂ) | |
6 | 5 | snssd 4812 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → {0} ⊆ ℂ) |
7 | 4, 6 | unssd 4186 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆ ℂ) |
8 | 7 | ad2antrr 725 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ) |
9 | 8 | adantr 482 | . . . . . . . 8 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆ ℂ) |
10 | simplrr 777 | . . . . . . . . . 10 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
11 | cnex 11188 | . . . . . . . . . . . 12 ⊢ ℂ ∈ V | |
12 | ssexg 5323 | . . . . . . . . . . . 12 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | |
13 | 8, 11, 12 | sylancl 587 | . . . . . . . . . . 11 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V) |
14 | nn0ex 12475 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
15 | elmapg 8830 | . . . . . . . . . . 11 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) | |
16 | 13, 14, 15 | sylancl 587 | . . . . . . . . . 10 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
17 | 10, 16 | mpbid 231 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
18 | elfznn0 13591 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) | |
19 | ffvelcdm 7081 | . . . . . . . . 9 ⊢ ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) | |
20 | 17, 18, 19 | syl2an 597 | . . . . . . . 8 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) |
21 | 9, 20 | sseldd 3983 | . . . . . . 7 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℂ) |
22 | simpr 486 | . . . . . . . 8 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
23 | expcl 14042 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) | |
24 | 22, 18, 23 | syl2an 597 | . . . . . . 7 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑𝑘) ∈ ℂ) |
25 | 21, 24 | mulcld 11231 | . . . . . 6 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
26 | 3, 25 | fsumcl 15676 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
27 | 26 | fmpttd 7112 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ) |
28 | feq1 6696 | . . . 4 ⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ)) | |
29 | 27, 28 | syl5ibrcom 246 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
30 | 29 | rexlimdvva 3212 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
31 | 2, 30 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 Vcvv 3475 ∪ cun 3946 ⊆ wss 3948 {csn 4628 ↦ cmpt 5231 ⟶wf 6537 ‘cfv 6541 (class class class)co 7406 ↑m cmap 8817 ℂcc 11105 0cc0 11107 · cmul 11112 ℕ0cn0 12469 ...cfz 13481 ↑cexp 14024 Σcsu 15629 Polycply 25690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7722 ax-inf2 9633 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7362 df-ov 7409 df-oprab 7410 df-mpo 7411 df-om 7853 df-1st 7972 df-2nd 7973 df-frecs 8263 df-wrecs 8294 df-recs 8368 df-rdg 8407 df-1o 8463 df-er 8700 df-map 8819 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-sup 9434 df-oi 9502 df-card 9931 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-div 11869 df-nn 12210 df-2 12272 df-3 12273 df-n0 12470 df-z 12556 df-uz 12820 df-rp 12972 df-fz 13482 df-fzo 13625 df-seq 13964 df-exp 14025 df-hash 14288 df-cj 15043 df-re 15044 df-im 15045 df-sqrt 15179 df-abs 15180 df-clim 15429 df-sum 15630 df-ply 25694 |
This theorem is referenced by: plysub 25725 plyco 25747 0dgrb 25752 coe0 25762 coesub 25763 dgrsub 25778 dgrcolem1 25779 dgrcolem2 25780 dgrco 25781 plymul0or 25786 plyreres 25788 dvply2g 25790 dvnply2 25792 plycpn 25794 plydivlem3 25800 plydivlem4 25801 plydiveu 25803 plyremlem 25809 plyrem 25810 facth 25811 fta1lem 25812 fta1 25813 quotcan 25814 vieta1lem1 25815 vieta1lem2 25816 vieta1 25817 plyexmo 25818 elaa 25821 elqaalem3 25826 aannenlem1 25833 aalioulem2 25838 aalioulem3 25839 aalioulem4 25840 taylthlem2 25878 ftalem2 26568 ftalem3 26569 ftalem4 26570 ftalem5 26571 ftalem7 26573 basellem4 26578 basellem5 26579 plymul02 33546 plymulx0 33547 signsplypnf 33550 signsply0 33551 mpaaeu 41878 rngunsnply 41901 |
Copyright terms: Public domain | W3C validator |