| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyf | Structured version Visualization version GIF version | ||
| Description: A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyf | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elply 26152 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 3 | fzfid 13991 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin) | |
| 4 | plybss 26151 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 5 | 0cnd 11228 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℂ) | |
| 6 | 5 | snssd 4785 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → {0} ⊆ ℂ) |
| 7 | 4, 6 | unssd 4167 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆ ℂ) |
| 8 | 7 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆ ℂ) |
| 10 | simplrr 777 | . . . . . . . . . 10 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
| 11 | cnex 11210 | . . . . . . . . . . . 12 ⊢ ℂ ∈ V | |
| 12 | ssexg 5293 | . . . . . . . . . . . 12 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | |
| 13 | 8, 11, 12 | sylancl 586 | . . . . . . . . . . 11 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V) |
| 14 | nn0ex 12507 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
| 15 | elmapg 8853 | . . . . . . . . . . 11 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) | |
| 16 | 13, 14, 15 | sylancl 586 | . . . . . . . . . 10 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
| 17 | 10, 16 | mpbid 232 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 18 | elfznn0 13637 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) | |
| 19 | ffvelcdm 7071 | . . . . . . . . 9 ⊢ ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . . . . 8 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) |
| 21 | 9, 20 | sseldd 3959 | . . . . . . 7 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℂ) |
| 22 | simpr 484 | . . . . . . . 8 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
| 23 | expcl 14097 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) | |
| 24 | 22, 18, 23 | syl2an 596 | . . . . . . 7 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑𝑘) ∈ ℂ) |
| 25 | 21, 24 | mulcld 11255 | . . . . . 6 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 26 | 3, 25 | fsumcl 15749 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 27 | 26 | fmpttd 7105 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ) |
| 28 | feq1 6686 | . . . 4 ⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ)) | |
| 29 | 27, 28 | syl5ibrcom 247 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
| 30 | 29 | rexlimdvva 3198 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
| 31 | 2, 30 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 {csn 4601 ↦ cmpt 5201 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 ℂcc 11127 0cc0 11129 · cmul 11134 ℕ0cn0 12501 ...cfz 13524 ↑cexp 14079 Σcsu 15702 Polycply 26141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-n0 12502 df-z 12589 df-uz 12853 df-rp 13009 df-fz 13525 df-fzo 13672 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-ply 26145 |
| This theorem is referenced by: plysub 26176 plyco 26198 0dgrb 26203 coe0 26213 coesub 26214 dgrsub 26230 dgrcolem1 26231 dgrcolem2 26232 dgrco 26233 plymul0or 26240 plyreres 26242 dvply2g 26244 dvply2gOLD 26245 dvnply2 26247 plycpn 26249 plydivlem3 26255 plydivlem4 26256 plydiveu 26258 plyremlem 26264 plyrem 26265 facth 26266 fta1lem 26267 fta1 26268 quotcan 26269 vieta1lem1 26270 vieta1lem2 26271 vieta1 26272 plyexmo 26273 elaa 26276 elqaalem3 26281 aannenlem1 26288 aalioulem2 26293 aalioulem3 26294 aalioulem4 26295 taylthlem2 26334 taylthlem2OLD 26335 ftalem2 27036 ftalem3 27037 ftalem4 27038 ftalem5 27039 ftalem7 27041 basellem4 27046 basellem5 27047 plymul02 34578 plymulx0 34579 signsplypnf 34582 signsply0 34583 mpaaeu 43174 rngunsnply 43193 |
| Copyright terms: Public domain | W3C validator |