![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyf | Structured version Visualization version GIF version |
Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plyf | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elply 24291 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
2 | 1 | simprbi 491 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
3 | fzfid 13026 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin) | |
4 | plybss 24290 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
5 | 0cnd 10322 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℂ) | |
6 | 5 | snssd 4529 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → {0} ⊆ ℂ) |
7 | 4, 6 | unssd 3988 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆ ℂ) |
8 | 7 | ad2antrr 718 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ) |
9 | 8 | adantr 473 | . . . . . . . 8 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆ ℂ) |
10 | simplrr 797 | . . . . . . . . . 10 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)) | |
11 | cnex 10306 | . . . . . . . . . . . 12 ⊢ ℂ ∈ V | |
12 | ssexg 5000 | . . . . . . . . . . . 12 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | |
13 | 8, 11, 12 | sylancl 581 | . . . . . . . . . . 11 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V) |
14 | nn0ex 11586 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
15 | elmapg 8109 | . . . . . . . . . . 11 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) | |
16 | 13, 14, 15 | sylancl 581 | . . . . . . . . . 10 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
17 | 10, 16 | mpbid 224 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
18 | elfznn0 12686 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) | |
19 | ffvelrn 6584 | . . . . . . . . 9 ⊢ ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) | |
20 | 17, 18, 19 | syl2an 590 | . . . . . . . 8 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) |
21 | 9, 20 | sseldd 3800 | . . . . . . 7 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℂ) |
22 | simpr 478 | . . . . . . . 8 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
23 | expcl 13131 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) | |
24 | 22, 18, 23 | syl2an 590 | . . . . . . 7 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑𝑘) ∈ ℂ) |
25 | 21, 24 | mulcld 10350 | . . . . . 6 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
26 | 3, 25 | fsumcl 14804 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
27 | 26 | fmpttd 6612 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ) |
28 | feq1 6238 | . . . 4 ⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ)) | |
29 | 27, 28 | syl5ibrcom 239 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
30 | 29 | rexlimdvva 3220 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑𝑚 ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
31 | 2, 30 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∃wrex 3091 Vcvv 3386 ∪ cun 3768 ⊆ wss 3770 {csn 4369 ↦ cmpt 4923 ⟶wf 6098 ‘cfv 6102 (class class class)co 6879 ↑𝑚 cmap 8096 ℂcc 10223 0cc0 10225 · cmul 10230 ℕ0cn0 11579 ...cfz 12579 ↑cexp 13113 Σcsu 14756 Polycply 24280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-inf2 8789 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 ax-pre-sup 10303 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-se 5273 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-isom 6111 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-map 8098 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-sup 8591 df-oi 8658 df-card 9052 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-div 10978 df-nn 11314 df-2 11375 df-3 11376 df-n0 11580 df-z 11666 df-uz 11930 df-rp 12074 df-fz 12580 df-fzo 12720 df-seq 13055 df-exp 13114 df-hash 13370 df-cj 14179 df-re 14180 df-im 14181 df-sqrt 14315 df-abs 14316 df-clim 14559 df-sum 14757 df-ply 24284 |
This theorem is referenced by: plysub 24315 plyco 24337 0dgrb 24342 coe0 24352 coesub 24353 dgrsub 24368 dgrcolem1 24369 dgrcolem2 24370 dgrco 24371 plymul0or 24376 plyreres 24378 dvply2g 24380 dvnply2 24382 plycpn 24384 plydivlem3 24390 plydivlem4 24391 plydiveu 24393 plyremlem 24399 plyrem 24400 facth 24401 fta1lem 24402 fta1 24403 quotcan 24404 vieta1lem1 24405 vieta1lem2 24406 vieta1 24407 plyexmo 24408 elaa 24411 elqaalem3 24416 aannenlem1 24423 aalioulem2 24428 aalioulem3 24429 aalioulem4 24430 taylthlem2 24468 ftalem2 25151 ftalem3 25152 ftalem4 25153 ftalem5 25154 ftalem7 25156 basellem4 25161 basellem5 25162 plymul02 31140 plymulx0 31141 signsplypnf 31144 signsply0 31145 mpaaeu 38500 rngunsnply 38523 |
Copyright terms: Public domain | W3C validator |