MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyf Structured version   Visualization version   GIF version

Theorem plyf 25359
Description: The polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyf (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)

Proof of Theorem plyf
Dummy variables 𝑘 𝑎 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elply 25356 . . 3 (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)))))
21simprbi 497 . 2 (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))))
3 fzfid 13693 . . . . . 6 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin)
4 plybss 25355 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
5 0cnd 10968 . . . . . . . . . . . 12 (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℂ)
65snssd 4742 . . . . . . . . . . 11 (𝐹 ∈ (Poly‘𝑆) → {0} ⊆ ℂ)
74, 6unssd 4120 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆ ℂ)
87ad2antrr 723 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ)
98adantr 481 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆ ℂ)
10 simplrr 775 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))
11 cnex 10952 . . . . . . . . . . . 12 ℂ ∈ V
12 ssexg 5247 . . . . . . . . . . . 12 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
138, 11, 12sylancl 586 . . . . . . . . . . 11 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 12239 . . . . . . . . . . 11 0 ∈ V
15 elmapg 8628 . . . . . . . . . . 11 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 586 . . . . . . . . . 10 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0})))
1710, 16mpbid 231 . . . . . . . . 9 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0}))
18 elfznn0 13349 . . . . . . . . 9 (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0)
19 ffvelrn 6959 . . . . . . . . 9 ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
2017, 18, 19syl2an 596 . . . . . . . 8 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ (𝑆 ∪ {0}))
219, 20sseldd 3922 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎𝑘) ∈ ℂ)
22 simpr 485 . . . . . . . 8 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ)
23 expcl 13800 . . . . . . . 8 ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧𝑘) ∈ ℂ)
2422, 18, 23syl2an 596 . . . . . . 7 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧𝑘) ∈ ℂ)
2521, 24mulcld 10995 . . . . . 6 ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
263, 25fsumcl 15445 . . . . 5 (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘)) ∈ ℂ)
2726fmpttd 6989 . . . 4 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))):ℂ⟶ℂ)
28 feq1 6581 . . . 4 (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))):ℂ⟶ℂ))
2927, 28syl5ibrcom 246 . . 3 ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹:ℂ⟶ℂ))
3029rexlimdvva 3223 . 2 (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0𝑎 ∈ ((𝑆 ∪ {0}) ↑m0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎𝑘) · (𝑧𝑘))) → 𝐹:ℂ⟶ℂ))
312, 30mpd 15 1 (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  Vcvv 3432  cun 3885  wss 3887  {csn 4561  cmpt 5157  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  cc 10869  0cc0 10871   · cmul 10876  0cn0 12233  ...cfz 13239  cexp 13782  Σcsu 15397  Polycply 25345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-ply 25349
This theorem is referenced by:  plysub  25380  plyco  25402  0dgrb  25407  coe0  25417  coesub  25418  dgrsub  25433  dgrcolem1  25434  dgrcolem2  25435  dgrco  25436  plymul0or  25441  plyreres  25443  dvply2g  25445  dvnply2  25447  plycpn  25449  plydivlem3  25455  plydivlem4  25456  plydiveu  25458  plyremlem  25464  plyrem  25465  facth  25466  fta1lem  25467  fta1  25468  quotcan  25469  vieta1lem1  25470  vieta1lem2  25471  vieta1  25472  plyexmo  25473  elaa  25476  elqaalem3  25481  aannenlem1  25488  aalioulem2  25493  aalioulem3  25494  aalioulem4  25495  taylthlem2  25533  ftalem2  26223  ftalem3  26224  ftalem4  26225  ftalem5  26226  ftalem7  26228  basellem4  26233  basellem5  26234  plymul02  32525  plymulx0  32526  signsplypnf  32529  signsply0  32530  mpaaeu  40975  rngunsnply  40998
  Copyright terms: Public domain W3C validator