| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyf | Structured version Visualization version GIF version | ||
| Description: A polynomial is a function on the complex numbers. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyf | ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elply 26100 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) ↔ (𝑆 ⊆ ℂ ∧ ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
| 2 | 1 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) |
| 3 | fzfid 13938 | . . . . . 6 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (0...𝑛) ∈ Fin) | |
| 4 | plybss 26099 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 5 | 0cnd 11167 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ (Poly‘𝑆) → 0 ∈ ℂ) | |
| 6 | 5 | snssd 4773 | . . . . . . . . . . 11 ⊢ (𝐹 ∈ (Poly‘𝑆) → {0} ⊆ ℂ) |
| 7 | 4, 6 | unssd 4155 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (Poly‘𝑆) → (𝑆 ∪ {0}) ⊆ ℂ) |
| 8 | 7 | ad2antrr 726 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ⊆ ℂ) |
| 9 | 8 | adantr 480 | . . . . . . . 8 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑆 ∪ {0}) ⊆ ℂ) |
| 10 | simplrr 777 | . . . . . . . . . 10 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
| 11 | cnex 11149 | . . . . . . . . . . . 12 ⊢ ℂ ∈ V | |
| 12 | ssexg 5278 | . . . . . . . . . . . 12 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | |
| 13 | 8, 11, 12 | sylancl 586 | . . . . . . . . . . 11 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑆 ∪ {0}) ∈ V) |
| 14 | nn0ex 12448 | . . . . . . . . . . 11 ⊢ ℕ0 ∈ V | |
| 15 | elmapg 8812 | . . . . . . . . . . 11 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) | |
| 16 | 13, 14, 15 | sylancl 586 | . . . . . . . . . 10 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → (𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝑎:ℕ0⟶(𝑆 ∪ {0}))) |
| 17 | 10, 16 | mpbid 232 | . . . . . . . . 9 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑎:ℕ0⟶(𝑆 ∪ {0})) |
| 18 | elfznn0 13581 | . . . . . . . . 9 ⊢ (𝑘 ∈ (0...𝑛) → 𝑘 ∈ ℕ0) | |
| 19 | ffvelcdm 7053 | . . . . . . . . 9 ⊢ ((𝑎:ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) | |
| 20 | 17, 18, 19 | syl2an 596 | . . . . . . . 8 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ (𝑆 ∪ {0})) |
| 21 | 9, 20 | sseldd 3947 | . . . . . . 7 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑎‘𝑘) ∈ ℂ) |
| 22 | simpr 484 | . . . . . . . 8 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → 𝑧 ∈ ℂ) | |
| 23 | expcl 14044 | . . . . . . . 8 ⊢ ((𝑧 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑧↑𝑘) ∈ ℂ) | |
| 24 | 22, 18, 23 | syl2an 596 | . . . . . . 7 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → (𝑧↑𝑘) ∈ ℂ) |
| 25 | 21, 24 | mulcld 11194 | . . . . . 6 ⊢ ((((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑛)) → ((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 26 | 3, 25 | fsumcl 15699 | . . . . 5 ⊢ (((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) ∈ ℂ) |
| 27 | 26 | fmpttd 7087 | . . . 4 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ) |
| 28 | feq1 6666 | . . . 4 ⊢ (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → (𝐹:ℂ⟶ℂ ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))):ℂ⟶ℂ)) | |
| 29 | 27, 28 | syl5ibrcom 247 | . . 3 ⊢ ((𝐹 ∈ (Poly‘𝑆) ∧ (𝑛 ∈ ℕ0 ∧ 𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0))) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
| 30 | 29 | rexlimdvva 3194 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (∃𝑛 ∈ ℕ0 ∃𝑎 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) → 𝐹:ℂ⟶ℂ)) |
| 31 | 2, 30 | mpd 15 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐹:ℂ⟶ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 {csn 4589 ↦ cmpt 5188 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 ℂcc 11066 0cc0 11068 · cmul 11073 ℕ0cn0 12442 ...cfz 13468 ↑cexp 14026 Σcsu 15652 Polycply 26089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-seq 13967 df-exp 14027 df-hash 14296 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-clim 15454 df-sum 15653 df-ply 26093 |
| This theorem is referenced by: plysub 26124 plyco 26146 0dgrb 26151 coe0 26161 coesub 26162 dgrsub 26178 dgrcolem1 26179 dgrcolem2 26180 dgrco 26181 plymul0or 26188 plyreres 26190 dvply2g 26192 dvply2gOLD 26193 dvnply2 26195 plycpn 26197 plydivlem3 26203 plydivlem4 26204 plydiveu 26206 plyremlem 26212 plyrem 26213 facth 26214 fta1lem 26215 fta1 26216 quotcan 26217 vieta1lem1 26218 vieta1lem2 26219 vieta1 26220 plyexmo 26221 elaa 26224 elqaalem3 26229 aannenlem1 26236 aalioulem2 26241 aalioulem3 26242 aalioulem4 26243 taylthlem2 26282 taylthlem2OLD 26283 ftalem2 26984 ftalem3 26985 ftalem4 26986 ftalem5 26987 ftalem7 26989 basellem4 26994 basellem5 26995 plymul02 34537 plymulx0 34538 signsplypnf 34541 signsply0 34542 mpaaeu 43139 rngunsnply 43158 tannpoly 46891 |
| Copyright terms: Public domain | W3C validator |