| Step | Hyp | Ref
| Expression |
| 1 | | plycj.4 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
| 2 | | eqid 2736 |
. . . . 5
⊢
(deg‘𝐹) =
(deg‘𝐹) |
| 3 | | plycj.2 |
. . . . 5
⊢ 𝐺 = ((∗ ∘ 𝐹) ∘
∗) |
| 4 | | eqid 2736 |
. . . . 5
⊢
(coeff‘𝐹) =
(coeff‘𝐹) |
| 5 | 2, 3, 4 | plycjlem 26239 |
. . . 4
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((∗ ∘
(coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
| 6 | 1, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((∗ ∘
(coeff‘𝐹))‘𝑘) · (𝑧↑𝑘)))) |
| 7 | | plybss 26156 |
. . . . . 6
⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) |
| 8 | 1, 7 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ⊆ ℂ) |
| 9 | | 0cnd 11233 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℂ) |
| 10 | 9 | snssd 4790 |
. . . . 5
⊢ (𝜑 → {0} ⊆
ℂ) |
| 11 | 8, 10 | unssd 4172 |
. . . 4
⊢ (𝜑 → (𝑆 ∪ {0}) ⊆
ℂ) |
| 12 | | dgrcl 26195 |
. . . . 5
⊢ (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈
ℕ0) |
| 13 | 1, 12 | syl 17 |
. . . 4
⊢ (𝜑 → (deg‘𝐹) ∈
ℕ0) |
| 14 | 4 | coef 26192 |
. . . . . . 7
⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 15 | 1, 14 | syl 17 |
. . . . . 6
⊢ (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0})) |
| 16 | | elfznn0 13642 |
. . . . . 6
⊢ (𝑘 ∈ (0...(deg‘𝐹)) → 𝑘 ∈ ℕ0) |
| 17 | | fvco3 6983 |
. . . . . 6
⊢
(((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) |
| 18 | 15, 16, 17 | syl2an 596 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝐹))) → ((∗ ∘
(coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘))) |
| 19 | | ffvelcdm 7076 |
. . . . . . 7
⊢
(((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0)
→ ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 20 | 15, 16, 19 | syl2an 596 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝐹))) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0})) |
| 21 | | plycj.3 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → (∗‘𝑥) ∈ 𝑆) |
| 22 | 21 | ralrimiva 3133 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑆 (∗‘𝑥) ∈ 𝑆) |
| 23 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘))) |
| 24 | 23 | eleq1d 2820 |
. . . . . . . . . . 11
⊢ (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 25 | 24 | rspccv 3603 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 26 | 22, 25 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆)) |
| 27 | | elsni 4623 |
. . . . . . . . . . . . 13
⊢
(((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0) |
| 28 | 27 | fveq2d 6885 |
. . . . . . . . . . . 12
⊢
(((coeff‘𝐹)‘𝑘) ∈ {0} →
(∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0)) |
| 29 | | cj0 15182 |
. . . . . . . . . . . 12
⊢
(∗‘0) = 0 |
| 30 | 28, 29 | eqtrdi 2787 |
. . . . . . . . . . 11
⊢
(((coeff‘𝐹)‘𝑘) ∈ {0} →
(∗‘((coeff‘𝐹)‘𝑘)) = 0) |
| 31 | | fvex 6894 |
. . . . . . . . . . . 12
⊢
(∗‘((coeff‘𝐹)‘𝑘)) ∈ V |
| 32 | 31 | elsn 4621 |
. . . . . . . . . . 11
⊢
((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔
(∗‘((coeff‘𝐹)‘𝑘)) = 0) |
| 33 | 30, 32 | sylibr 234 |
. . . . . . . . . 10
⊢
(((coeff‘𝐹)‘𝑘) ∈ {0} →
(∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}) |
| 34 | 33 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} →
(∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) |
| 35 | 26, 34 | orim12d 966 |
. . . . . . . 8
⊢ (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) →
((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))) |
| 36 | | elun 4133 |
. . . . . . . 8
⊢
(((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0})) |
| 37 | | elun 4133 |
. . . . . . . 8
⊢
((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔
((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})) |
| 38 | 35, 36, 37 | 3imtr4g 296 |
. . . . . . 7
⊢ (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) →
(∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 39 | 38 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝐹))) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) →
(∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))) |
| 40 | 20, 39 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝐹))) →
(∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})) |
| 41 | 18, 40 | eqeltrd 2835 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...(deg‘𝐹))) → ((∗ ∘
(coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0})) |
| 42 | 11, 13, 41 | elplyd 26164 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((∗ ∘
(coeff‘𝐹))‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
| 43 | 6, 42 | eqeltrd 2835 |
. 2
⊢ (𝜑 → 𝐺 ∈ (Poly‘(𝑆 ∪ {0}))) |
| 44 | | plyun0 26159 |
. 2
⊢
(Poly‘(𝑆 ∪
{0})) = (Poly‘𝑆) |
| 45 | 43, 44 | eleqtrdi 2845 |
1
⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |