MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycj Structured version   Visualization version   GIF version

Theorem plycj 25544
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1 𝑁 = (deg‘𝐹)
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycj.3 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
plycj.4 (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycj (𝜑𝐺 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝜑,𝑥   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem plycj
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plycj.1 . . . . 5 𝑁 = (deg‘𝐹)
3 plycj.2 . . . . 5 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
4 eqid 2736 . . . . 5 (coeff‘𝐹) = (coeff‘𝐹)
52, 3, 4plycjlem 25543 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
61, 5syl 17 . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
7 plybss 25461 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
81, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
9 0cnd 11069 . . . . . 6 (𝜑 → 0 ∈ ℂ)
109snssd 4756 . . . . 5 (𝜑 → {0} ⊆ ℂ)
118, 10unssd 4133 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
12 dgrcl 25500 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
131, 12syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
142, 13eqeltrid 2841 . . . 4 (𝜑𝑁 ∈ ℕ0)
154coef 25497 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
161, 15syl 17 . . . . . 6 (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
17 elfznn0 13450 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
18 fvco3 6923 . . . . . 6 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
1916, 17, 18syl2an 596 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
20 ffvelcdm 7015 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
2116, 17, 20syl2an 596 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
22 plycj.3 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
2322ralrimiva 3139 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆)
24 fveq2 6825 . . . . . . . . . . . 12 (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘)))
2524eleq1d 2821 . . . . . . . . . . 11 (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2625rspccv 3567 . . . . . . . . . 10 (∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2723, 26syl 17 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
28 elsni 4590 . . . . . . . . . . . . 13 (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0)
2928fveq2d 6829 . . . . . . . . . . . 12 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0))
30 cj0 14968 . . . . . . . . . . . 12 (∗‘0) = 0
3129, 30eqtrdi 2792 . . . . . . . . . . 11 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0)
32 fvex 6838 . . . . . . . . . . . 12 (∗‘((coeff‘𝐹)‘𝑘)) ∈ V
3332elsn 4588 . . . . . . . . . . 11 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0)
3431, 33sylibr 233 . . . . . . . . . 10 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})
3534a1i 11 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3627, 35orim12d 962 . . . . . . . 8 (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})))
37 elun 4095 . . . . . . . 8 (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}))
38 elun 4095 . . . . . . . 8 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3936, 37, 383imtr4g 295 . . . . . . 7 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4039adantr 481 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4121, 40mpd 15 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))
4219, 41eqeltrd 2837 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0}))
4311, 14, 42elplyd 25469 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
446, 43eqeltrd 2837 . 2 (𝜑𝐺 ∈ (Poly‘(𝑆 ∪ {0})))
45 plyun0 25464 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4644, 45eleqtrdi 2847 1 (𝜑𝐺 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1540  wcel 2105  wral 3061  cun 3896  wss 3898  {csn 4573  cmpt 5175  ccom 5624  wf 6475  cfv 6479  (class class class)co 7337  cc 10970  0cc0 10972   · cmul 10977  0cn0 12334  ...cfz 13340  cexp 13883  ccj 14906  Σcsu 15496  Polycply 25451  coeffccoe 25453  degcdgr 25454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-inf2 9498  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049  ax-pre-sup 11050
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-se 5576  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-isom 6488  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-sup 9299  df-inf 9300  df-oi 9367  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-2 12137  df-3 12138  df-n0 12335  df-z 12421  df-uz 12684  df-rp 12832  df-fz 13341  df-fzo 13484  df-fl 13613  df-seq 13823  df-exp 13884  df-hash 14146  df-cj 14909  df-re 14910  df-im 14911  df-sqrt 15045  df-abs 15046  df-clim 15296  df-rlim 15297  df-sum 15497  df-0p 24940  df-ply 25455  df-coe 25457  df-dgr 25458
This theorem is referenced by:  coecj  25545
  Copyright terms: Public domain W3C validator