MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycj Structured version   Visualization version   GIF version

Theorem plycj 25343
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1 𝑁 = (deg‘𝐹)
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycj.3 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
plycj.4 (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycj (𝜑𝐺 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝜑,𝑥   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem plycj
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plycj.1 . . . . 5 𝑁 = (deg‘𝐹)
3 plycj.2 . . . . 5 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
4 eqid 2738 . . . . 5 (coeff‘𝐹) = (coeff‘𝐹)
52, 3, 4plycjlem 25342 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
61, 5syl 17 . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
7 plybss 25260 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
81, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
9 0cnd 10899 . . . . . 6 (𝜑 → 0 ∈ ℂ)
109snssd 4739 . . . . 5 (𝜑 → {0} ⊆ ℂ)
118, 10unssd 4116 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
12 dgrcl 25299 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
131, 12syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
142, 13eqeltrid 2843 . . . 4 (𝜑𝑁 ∈ ℕ0)
154coef 25296 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
161, 15syl 17 . . . . . 6 (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
17 elfznn0 13278 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
18 fvco3 6849 . . . . . 6 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
1916, 17, 18syl2an 595 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
20 ffvelrn 6941 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
2116, 17, 20syl2an 595 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
22 plycj.3 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
2322ralrimiva 3107 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆)
24 fveq2 6756 . . . . . . . . . . . 12 (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘)))
2524eleq1d 2823 . . . . . . . . . . 11 (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2625rspccv 3549 . . . . . . . . . 10 (∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2723, 26syl 17 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
28 elsni 4575 . . . . . . . . . . . . 13 (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0)
2928fveq2d 6760 . . . . . . . . . . . 12 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0))
30 cj0 14797 . . . . . . . . . . . 12 (∗‘0) = 0
3129, 30eqtrdi 2795 . . . . . . . . . . 11 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0)
32 fvex 6769 . . . . . . . . . . . 12 (∗‘((coeff‘𝐹)‘𝑘)) ∈ V
3332elsn 4573 . . . . . . . . . . 11 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0)
3431, 33sylibr 233 . . . . . . . . . 10 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})
3534a1i 11 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3627, 35orim12d 961 . . . . . . . 8 (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})))
37 elun 4079 . . . . . . . 8 (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}))
38 elun 4079 . . . . . . . 8 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3936, 37, 383imtr4g 295 . . . . . . 7 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4039adantr 480 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4121, 40mpd 15 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))
4219, 41eqeltrd 2839 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0}))
4311, 14, 42elplyd 25268 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
446, 43eqeltrd 2839 . 2 (𝜑𝐺 ∈ (Poly‘(𝑆 ∪ {0})))
45 plyun0 25263 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4644, 45eleqtrdi 2849 1 (𝜑𝐺 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  cun 3881  wss 3883  {csn 4558  cmpt 5153  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   · cmul 10807  0cn0 12163  ...cfz 13168  cexp 13710  ccj 14735  Σcsu 15325  Polycply 25250  coeffccoe 25252  degcdgr 25253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-0p 24739  df-ply 25254  df-coe 25256  df-dgr 25257
This theorem is referenced by:  coecj  25344
  Copyright terms: Public domain W3C validator