MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plycj Structured version   Visualization version   GIF version

Theorem plycj 24869
Description: The double conjugation of a polynomial is a polynomial. (The single conjugation is not because our definition of polynomial includes only holomorphic functions, i.e. no dependence on (∗‘𝑧) independently of 𝑧.) (Contributed by Mario Carneiro, 24-Jul-2014.)
Hypotheses
Ref Expression
plycj.1 𝑁 = (deg‘𝐹)
plycj.2 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
plycj.3 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
plycj.4 (𝜑𝐹 ∈ (Poly‘𝑆))
Assertion
Ref Expression
plycj (𝜑𝐺 ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝐹   𝑥,𝑁   𝜑,𝑥   𝑥,𝑆
Allowed substitution hint:   𝐺(𝑥)

Proof of Theorem plycj
Dummy variables 𝑘 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plycj.4 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plycj.1 . . . . 5 𝑁 = (deg‘𝐹)
3 plycj.2 . . . . 5 𝐺 = ((∗ ∘ 𝐹) ∘ ∗)
4 eqid 2823 . . . . 5 (coeff‘𝐹) = (coeff‘𝐹)
52, 3, 4plycjlem 24868 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
61, 5syl 17 . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))))
7 plybss 24786 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
81, 7syl 17 . . . . 5 (𝜑𝑆 ⊆ ℂ)
9 0cnd 10636 . . . . . 6 (𝜑 → 0 ∈ ℂ)
109snssd 4744 . . . . 5 (𝜑 → {0} ⊆ ℂ)
118, 10unssd 4164 . . . 4 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
12 dgrcl 24825 . . . . . 6 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
131, 12syl 17 . . . . 5 (𝜑 → (deg‘𝐹) ∈ ℕ0)
142, 13eqeltrid 2919 . . . 4 (𝜑𝑁 ∈ ℕ0)
154coef 24822 . . . . . . 7 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
161, 15syl 17 . . . . . 6 (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
17 elfznn0 13003 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
18 fvco3 6762 . . . . . 6 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
1916, 17, 18syl2an 597 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) = (∗‘((coeff‘𝐹)‘𝑘)))
20 ffvelrn 6851 . . . . . . 7 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
2116, 17, 20syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → ((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}))
22 plycj.3 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → (∗‘𝑥) ∈ 𝑆)
2322ralrimiva 3184 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆)
24 fveq2 6672 . . . . . . . . . . . 12 (𝑥 = ((coeff‘𝐹)‘𝑘) → (∗‘𝑥) = (∗‘((coeff‘𝐹)‘𝑘)))
2524eleq1d 2899 . . . . . . . . . . 11 (𝑥 = ((coeff‘𝐹)‘𝑘) → ((∗‘𝑥) ∈ 𝑆 ↔ (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2625rspccv 3622 . . . . . . . . . 10 (∀𝑥𝑆 (∗‘𝑥) ∈ 𝑆 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
2723, 26syl 17 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ 𝑆 → (∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆))
28 elsni 4586 . . . . . . . . . . . . 13 (((coeff‘𝐹)‘𝑘) ∈ {0} → ((coeff‘𝐹)‘𝑘) = 0)
2928fveq2d 6676 . . . . . . . . . . . 12 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = (∗‘0))
30 cj0 14519 . . . . . . . . . . . 12 (∗‘0) = 0
3129, 30syl6eq 2874 . . . . . . . . . . 11 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) = 0)
32 fvex 6685 . . . . . . . . . . . 12 (∗‘((coeff‘𝐹)‘𝑘)) ∈ V
3332elsn 4584 . . . . . . . . . . 11 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ {0} ↔ (∗‘((coeff‘𝐹)‘𝑘)) = 0)
3431, 33sylibr 236 . . . . . . . . . 10 (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})
3534a1i 11 . . . . . . . . 9 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ {0} → (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3627, 35orim12d 961 . . . . . . . 8 (𝜑 → ((((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}) → ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0})))
37 elun 4127 . . . . . . . 8 (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) ↔ (((coeff‘𝐹)‘𝑘) ∈ 𝑆 ∨ ((coeff‘𝐹)‘𝑘) ∈ {0}))
38 elun 4127 . . . . . . . 8 ((∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}) ↔ ((∗‘((coeff‘𝐹)‘𝑘)) ∈ 𝑆 ∨ (∗‘((coeff‘𝐹)‘𝑘)) ∈ {0}))
3936, 37, 383imtr4g 298 . . . . . . 7 (𝜑 → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4039adantr 483 . . . . . 6 ((𝜑𝑘 ∈ (0...𝑁)) → (((coeff‘𝐹)‘𝑘) ∈ (𝑆 ∪ {0}) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0})))
4121, 40mpd 15 . . . . 5 ((𝜑𝑘 ∈ (0...𝑁)) → (∗‘((coeff‘𝐹)‘𝑘)) ∈ (𝑆 ∪ {0}))
4219, 41eqeltrd 2915 . . . 4 ((𝜑𝑘 ∈ (0...𝑁)) → ((∗ ∘ (coeff‘𝐹))‘𝑘) ∈ (𝑆 ∪ {0}))
4311, 14, 42elplyd 24794 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)(((∗ ∘ (coeff‘𝐹))‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
446, 43eqeltrd 2915 . 2 (𝜑𝐺 ∈ (Poly‘(𝑆 ∪ {0})))
45 plyun0 24789 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4644, 45eleqtrdi 2925 1 (𝜑𝐺 ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1537  wcel 2114  wral 3140  cun 3936  wss 3938  {csn 4569  cmpt 5148  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  0cc0 10539   · cmul 10544  0cn0 11900  ...cfz 12895  cexp 13432  ccj 14457  Σcsu 15044  Polycply 24776  coeffccoe 24778  degcdgr 24779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-rlim 14848  df-sum 15045  df-0p 24273  df-ply 24780  df-coe 24782  df-dgr 24783
This theorem is referenced by:  coecj  24870
  Copyright terms: Public domain W3C validator