MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyco Structured version   Visualization version   GIF version

Theorem plyco 26179
Description: The composition of two polynomials is a polynomial. (Contributed by Mario Carneiro, 23-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Hypotheses
Ref Expression
plyco.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyco.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyco.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyco.4 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
Assertion
Ref Expression
plyco (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦   𝜑,𝑥,𝑦   𝑥,𝑆,𝑦

Proof of Theorem plyco
Dummy variables 𝑘 𝑑 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyco.2 . . . . 5 (𝜑𝐺 ∈ (Poly‘𝑆))
2 plyf 26136 . . . . 5 (𝐺 ∈ (Poly‘𝑆) → 𝐺:ℂ⟶ℂ)
31, 2syl 17 . . . 4 (𝜑𝐺:ℂ⟶ℂ)
43ffvelcdmda 7038 . . 3 ((𝜑𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
53feqmptd 6911 . . 3 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
6 plyco.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
7 eqid 2729 . . . . 5 (coeff‘𝐹) = (coeff‘𝐹)
8 eqid 2729 . . . . 5 (deg‘𝐹) = (deg‘𝐹)
97, 8coeid 26176 . . . 4 (𝐹 ∈ (Poly‘𝑆) → 𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑥𝑘))))
106, 9syl 17 . . 3 (𝜑𝐹 = (𝑥 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑥𝑘))))
11 oveq1 7376 . . . . 5 (𝑥 = (𝐺𝑧) → (𝑥𝑘) = ((𝐺𝑧)↑𝑘))
1211oveq2d 7385 . . . 4 (𝑥 = (𝐺𝑧) → (((coeff‘𝐹)‘𝑘) · (𝑥𝑘)) = (((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)))
1312sumeq2sdv 15645 . . 3 (𝑥 = (𝐺𝑧) → Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · (𝑥𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)))
144, 5, 10, 13fmptco 7083 . 2 (𝜑 → (𝐹𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))))
15 dgrcl 26171 . . . 4 (𝐹 ∈ (Poly‘𝑆) → (deg‘𝐹) ∈ ℕ0)
166, 15syl 17 . . 3 (𝜑 → (deg‘𝐹) ∈ ℕ0)
17 oveq2 7377 . . . . . . . 8 (𝑥 = 0 → (0...𝑥) = (0...0))
1817sumeq1d 15642 . . . . . . 7 (𝑥 = 0 → Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)))
1918mpteq2dv 5196 . . . . . 6 (𝑥 = 0 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))))
2019eleq1d 2813 . . . . 5 (𝑥 = 0 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
2120imbi2d 340 . . . 4 (𝑥 = 0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
22 oveq2 7377 . . . . . . . 8 (𝑥 = 𝑑 → (0...𝑥) = (0...𝑑))
2322sumeq1d 15642 . . . . . . 7 (𝑥 = 𝑑 → Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)))
2423mpteq2dv 5196 . . . . . 6 (𝑥 = 𝑑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))))
2524eleq1d 2813 . . . . 5 (𝑥 = 𝑑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
2625imbi2d 340 . . . 4 (𝑥 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
27 oveq2 7377 . . . . . . . 8 (𝑥 = (𝑑 + 1) → (0...𝑥) = (0...(𝑑 + 1)))
2827sumeq1d 15642 . . . . . . 7 (𝑥 = (𝑑 + 1) → Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)))
2928mpteq2dv 5196 . . . . . 6 (𝑥 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))))
3029eleq1d 2813 . . . . 5 (𝑥 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
3130imbi2d 340 . . . 4 (𝑥 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
32 oveq2 7377 . . . . . . . 8 (𝑥 = (deg‘𝐹) → (0...𝑥) = (0...(deg‘𝐹)))
3332sumeq1d 15642 . . . . . . 7 (𝑥 = (deg‘𝐹) → Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)))
3433mpteq2dv 5196 . . . . . 6 (𝑥 = (deg‘𝐹) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))))
3534eleq1d 2813 . . . . 5 (𝑥 = (deg‘𝐹) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
3635imbi2d 340 . . . 4 (𝑥 = (deg‘𝐹) → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑥)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
37 0z 12516 . . . . . . . . 9 0 ∈ ℤ
384exp0d 14081 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧)↑0) = 1)
3938oveq2d 7385 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · ((𝐺𝑧)↑0)) = (((coeff‘𝐹)‘0) · 1))
40 plybss 26132 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
416, 40syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑆 ⊆ ℂ)
42 0cnd 11143 . . . . . . . . . . . . . . . 16 (𝜑 → 0 ∈ ℂ)
4342snssd 4769 . . . . . . . . . . . . . . 15 (𝜑 → {0} ⊆ ℂ)
4441, 43unssd 4151 . . . . . . . . . . . . . 14 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
457coef 26168 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
466, 45syl 17 . . . . . . . . . . . . . . 15 (𝜑 → (coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}))
47 0nn0 12433 . . . . . . . . . . . . . . 15 0 ∈ ℕ0
48 ffvelcdm 7035 . . . . . . . . . . . . . . 15 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ 0 ∈ ℕ0) → ((coeff‘𝐹)‘0) ∈ (𝑆 ∪ {0}))
4946, 47, 48sylancl 586 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘𝐹)‘0) ∈ (𝑆 ∪ {0}))
5044, 49sseldd 3944 . . . . . . . . . . . . 13 (𝜑 → ((coeff‘𝐹)‘0) ∈ ℂ)
5150adantr 480 . . . . . . . . . . . 12 ((𝜑𝑧 ∈ ℂ) → ((coeff‘𝐹)‘0) ∈ ℂ)
5251mulridd 11167 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · 1) = ((coeff‘𝐹)‘0))
5339, 52eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · ((𝐺𝑧)↑0)) = ((coeff‘𝐹)‘0))
5453, 51eqeltrd 2828 . . . . . . . . 9 ((𝜑𝑧 ∈ ℂ) → (((coeff‘𝐹)‘0) · ((𝐺𝑧)↑0)) ∈ ℂ)
55 fveq2 6840 . . . . . . . . . . 11 (𝑘 = 0 → ((coeff‘𝐹)‘𝑘) = ((coeff‘𝐹)‘0))
56 oveq2 7377 . . . . . . . . . . 11 (𝑘 = 0 → ((𝐺𝑧)↑𝑘) = ((𝐺𝑧)↑0))
5755, 56oveq12d 7387 . . . . . . . . . 10 (𝑘 = 0 → (((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = (((coeff‘𝐹)‘0) · ((𝐺𝑧)↑0)))
5857fsum1 15689 . . . . . . . . 9 ((0 ∈ ℤ ∧ (((coeff‘𝐹)‘0) · ((𝐺𝑧)↑0)) ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = (((coeff‘𝐹)‘0) · ((𝐺𝑧)↑0)))
5937, 54, 58sylancr 587 . . . . . . . 8 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = (((coeff‘𝐹)‘0) · ((𝐺𝑧)↑0)))
6059, 53eqtrd 2764 . . . . . . 7 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = ((coeff‘𝐹)‘0))
6160mpteq2dva 5195 . . . . . 6 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0)))
62 fconstmpt 5693 . . . . . 6 (ℂ × {((coeff‘𝐹)‘0)}) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘0))
6361, 62eqtr4di 2782 . . . . 5 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) = (ℂ × {((coeff‘𝐹)‘0)}))
64 plyconst 26144 . . . . . . 7 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ((coeff‘𝐹)‘0) ∈ (𝑆 ∪ {0})) → (ℂ × {((coeff‘𝐹)‘0)}) ∈ (Poly‘(𝑆 ∪ {0})))
6544, 49, 64syl2anc 584 . . . . . 6 (𝜑 → (ℂ × {((coeff‘𝐹)‘0)}) ∈ (Poly‘(𝑆 ∪ {0})))
66 plyun0 26135 . . . . . 6 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
6765, 66eleqtrdi 2838 . . . . 5 (𝜑 → (ℂ × {((coeff‘𝐹)‘0)}) ∈ (Poly‘𝑆))
6863, 67eqeltrd 2828 . . . 4 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...0)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
69 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
7044adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ0) → (𝑆 ∪ {0}) ⊆ ℂ)
71 peano2nn0 12458 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ0)
72 ffvelcdm 7035 . . . . . . . . . . . . . 14 (((coeff‘𝐹):ℕ0⟶(𝑆 ∪ {0}) ∧ (𝑑 + 1) ∈ ℕ0) → ((coeff‘𝐹)‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
7346, 71, 72syl2an 596 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ ℕ0) → ((coeff‘𝐹)‘(𝑑 + 1)) ∈ (𝑆 ∪ {0}))
74 plyconst 26144 . . . . . . . . . . . . 13 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ((coeff‘𝐹)‘(𝑑 + 1)) ∈ (𝑆 ∪ {0})) → (ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0})))
7570, 73, 74syl2anc 584 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∈ (Poly‘(𝑆 ∪ {0})))
7675, 66eleqtrdi 2838 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∈ (Poly‘𝑆))
77 nn0p1nn 12457 . . . . . . . . . . . . 13 (𝑑 ∈ ℕ0 → (𝑑 + 1) ∈ ℕ)
78 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → ((𝐺𝑧)↑𝑥) = ((𝐺𝑧)↑1))
7978mpteq2dv 5196 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)))
8079eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑥 = 1 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆)))
8180imbi2d 340 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆))))
82 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑑 → ((𝐺𝑧)↑𝑥) = ((𝐺𝑧)↑𝑑))
8382mpteq2dv 5196 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)))
8483eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑥 = 𝑑 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆)))
8584imbi2d 340 . . . . . . . . . . . . . 14 (𝑥 = 𝑑 → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))))
86 oveq2 7377 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑑 + 1) → ((𝐺𝑧)↑𝑥) = ((𝐺𝑧)↑(𝑑 + 1)))
8786mpteq2dv 5196 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑑 + 1) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
8887eleq1d 2813 . . . . . . . . . . . . . . 15 (𝑥 = (𝑑 + 1) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
8988imbi2d 340 . . . . . . . . . . . . . 14 (𝑥 = (𝑑 + 1) → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑥)) ∈ (Poly‘𝑆)) ↔ (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
904exp1d 14082 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧 ∈ ℂ) → ((𝐺𝑧)↑1) = (𝐺𝑧))
9190mpteq2dva 5195 . . . . . . . . . . . . . . . 16 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
9291, 5eqtr4d 2767 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) = 𝐺)
9392, 1eqeltrd 2828 . . . . . . . . . . . . . 14 (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑1)) ∈ (Poly‘𝑆))
94 simprr 772 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))
951adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → 𝐺 ∈ (Poly‘𝑆))
96 plyco.3 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
9796adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
98 plyco.4 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9998adantlr 715 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
10094, 95, 97, 99plymul 26156 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑑 ∈ ℕ ∧ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘f · 𝐺) ∈ (Poly‘𝑆))
101100expr 456 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘f · 𝐺) ∈ (Poly‘𝑆)))
102 cnex 11125 . . . . . . . . . . . . . . . . . . . . 21 ℂ ∈ V
103102a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ) → ℂ ∈ V)
104 ovexd 7404 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑𝑑) ∈ V)
1054adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
106 eqidd 2730 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)))
1075adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑑 ∈ ℕ) → 𝐺 = (𝑧 ∈ ℂ ↦ (𝐺𝑧)))
108103, 104, 105, 106, 107offval2 7653 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ (((𝐺𝑧)↑𝑑) · (𝐺𝑧))))
109 nnnn0 12425 . . . . . . . . . . . . . . . . . . . . . 22 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
110109ad2antlr 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0)
111105, 110expp1d 14088 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑑 ∈ ℕ) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑(𝑑 + 1)) = (((𝐺𝑧)↑𝑑) · (𝐺𝑧)))
112111mpteq2dva 5195 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑑 ∈ ℕ) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ (((𝐺𝑧)↑𝑑) · (𝐺𝑧))))
113108, 112eqtr4d 2767 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘f · 𝐺) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
114113eleq1d 2813 . . . . . . . . . . . . . . . . 17 ((𝜑𝑑 ∈ ℕ) → (((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∘f · 𝐺) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
115101, 114sylibd 239 . . . . . . . . . . . . . . . 16 ((𝜑𝑑 ∈ ℕ) → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
116115expcom 413 . . . . . . . . . . . . . . 15 (𝑑 ∈ ℕ → (𝜑 → ((𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
117116a2d 29 . . . . . . . . . . . . . 14 (𝑑 ∈ ℕ → ((𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑𝑑)) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))))
11881, 85, 89, 89, 93, 117nnind 12180 . . . . . . . . . . . . 13 ((𝑑 + 1) ∈ ℕ → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
11977, 118syl 17 . . . . . . . . . . . 12 (𝑑 ∈ ℕ0 → (𝜑 → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆)))
120119impcom 407 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) ∈ (Poly‘𝑆))
12196adantlr 715 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
12298adantlr 715 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
12376, 120, 121, 122plymul 26156 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → ((ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∘f · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆))
124123adantrr 717 . . . . . . . . 9 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∘f · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) ∈ (Poly‘𝑆))
12596adantlr 715 . . . . . . . . 9 (((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
12669, 124, 125plyadd 26155 . . . . . . . 8 ((𝜑 ∧ (𝑑 ∈ ℕ0 ∧ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∘f + ((ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∘f · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆))
127126expr 456 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∘f + ((ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∘f · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆)))
128102a1i 11 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → ℂ ∈ V)
129 sumex 15630 . . . . . . . . . . 11 Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) ∈ V
130129a1i 11 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) ∈ V)
131 ovexd 7404 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (((coeff‘𝐹)‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))) ∈ V)
132 eqidd 2730 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))))
133 fvexd 6855 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((coeff‘𝐹)‘(𝑑 + 1)) ∈ V)
134 ovexd 7404 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → ((𝐺𝑧)↑(𝑑 + 1)) ∈ V)
135 fconstmpt 5693 . . . . . . . . . . . 12 (ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘(𝑑 + 1)))
136135a1i 11 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) = (𝑧 ∈ ℂ ↦ ((coeff‘𝐹)‘(𝑑 + 1))))
137 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))) = (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))
138128, 133, 134, 136, 137offval2 7653 . . . . . . . . . 10 ((𝜑𝑑 ∈ ℕ0) → ((ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∘f · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1)))) = (𝑧 ∈ ℂ ↦ (((coeff‘𝐹)‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1)))))
139128, 130, 131, 132, 138offval2 7653 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∘f + ((ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∘f · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) + (((coeff‘𝐹)‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))))
140 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ ℕ0)
141 nn0uz 12811 . . . . . . . . . . . 12 0 = (ℤ‘0)
142140, 141eleqtrdi 2838 . . . . . . . . . . 11 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → 𝑑 ∈ (ℤ‘0))
1437coef3 26170 . . . . . . . . . . . . . . 15 (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹):ℕ0⟶ℂ)
1446, 143syl 17 . . . . . . . . . . . . . 14 (𝜑 → (coeff‘𝐹):ℕ0⟶ℂ)
145144ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (coeff‘𝐹):ℕ0⟶ℂ)
146 elfznn0 13557 . . . . . . . . . . . . 13 (𝑘 ∈ (0...(𝑑 + 1)) → 𝑘 ∈ ℕ0)
147 ffvelcdm 7035 . . . . . . . . . . . . 13 (((coeff‘𝐹):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((coeff‘𝐹)‘𝑘) ∈ ℂ)
148145, 146, 147syl2an 596 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((coeff‘𝐹)‘𝑘) ∈ ℂ)
1494adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → (𝐺𝑧) ∈ ℂ)
150 expcl 14020 . . . . . . . . . . . . 13 (((𝐺𝑧) ∈ ℂ ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑧)↑𝑘) ∈ ℂ)
151149, 146, 150syl2an 596 . . . . . . . . . . . 12 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → ((𝐺𝑧)↑𝑘) ∈ ℂ)
152148, 151mulcld 11170 . . . . . . . . . . 11 ((((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑑 + 1))) → (((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) ∈ ℂ)
153 fveq2 6840 . . . . . . . . . . . 12 (𝑘 = (𝑑 + 1) → ((coeff‘𝐹)‘𝑘) = ((coeff‘𝐹)‘(𝑑 + 1)))
154 oveq2 7377 . . . . . . . . . . . 12 (𝑘 = (𝑑 + 1) → ((𝐺𝑧)↑𝑘) = ((𝐺𝑧)↑(𝑑 + 1)))
155153, 154oveq12d 7387 . . . . . . . . . . 11 (𝑘 = (𝑑 + 1) → (((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = (((coeff‘𝐹)‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))
156142, 152, 155fsump1 15698 . . . . . . . . . 10 (((𝜑𝑑 ∈ ℕ0) ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) = (Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) + (((coeff‘𝐹)‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1)))))
157156mpteq2dva 5195 . . . . . . . . 9 ((𝜑𝑑 ∈ ℕ0) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) = (𝑧 ∈ ℂ ↦ (Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘)) + (((coeff‘𝐹)‘(𝑑 + 1)) · ((𝐺𝑧)↑(𝑑 + 1))))))
158139, 157eqtr4d 2767 . . . . . . . 8 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∘f + ((ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∘f · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))))
159158eleq1d 2813 . . . . . . 7 ((𝜑𝑑 ∈ ℕ0) → (((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∘f + ((ℂ × {((coeff‘𝐹)‘(𝑑 + 1))}) ∘f · (𝑧 ∈ ℂ ↦ ((𝐺𝑧)↑(𝑑 + 1))))) ∈ (Poly‘𝑆) ↔ (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
160127, 159sylibd 239 . . . . . 6 ((𝜑𝑑 ∈ ℕ0) → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
161160expcom 413 . . . . 5 (𝑑 ∈ ℕ0 → (𝜑 → ((𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
162161a2d 29 . . . 4 (𝑑 ∈ ℕ0 → ((𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑑)(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)) → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(𝑑 + 1))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))))
16321, 26, 31, 36, 68, 162nn0ind 12605 . . 3 ((deg‘𝐹) ∈ ℕ0 → (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆)))
16416, 163mpcom 38 . 2 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...(deg‘𝐹))(((coeff‘𝐹)‘𝑘) · ((𝐺𝑧)↑𝑘))) ∈ (Poly‘𝑆))
16514, 164eqeltrd 2828 1 (𝜑 → (𝐹𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cun 3909  wss 3911  {csn 4585  cmpt 5183   × cxp 5629  ccom 5635  wf 6495  cfv 6499  (class class class)co 7369  f cof 7631  cc 11042  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049  cn 12162  0cn0 12418  cz 12505  cuz 12769  ...cfz 13444  cexp 14002  Σcsu 15628  Polycply 26122  coeffccoe 26124  degcdgr 26125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-hash 14272  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15430  df-rlim 15431  df-sum 15629  df-0p 25604  df-ply 26126  df-coe 26128  df-dgr 26129
This theorem is referenced by:  dgrcolem1  26212  dgrcolem2  26213  taylply2  26308  taylply2OLD  26309  ftalem7  27022
  Copyright terms: Public domain W3C validator