Step | Hyp | Ref
| Expression |
1 | | plyco.2 |
. . . . 5
β’ (π β πΊ β (Polyβπ)) |
2 | | plyf 25703 |
. . . . 5
β’ (πΊ β (Polyβπ) β πΊ:ββΆβ) |
3 | 1, 2 | syl 17 |
. . . 4
β’ (π β πΊ:ββΆβ) |
4 | 3 | ffvelcdmda 7083 |
. . 3
β’ ((π β§ π§ β β) β (πΊβπ§) β β) |
5 | 3 | feqmptd 6957 |
. . 3
β’ (π β πΊ = (π§ β β β¦ (πΊβπ§))) |
6 | | plyco.1 |
. . . 4
β’ (π β πΉ β (Polyβπ)) |
7 | | eqid 2732 |
. . . . 5
β’
(coeffβπΉ) =
(coeffβπΉ) |
8 | | eqid 2732 |
. . . . 5
β’
(degβπΉ) =
(degβπΉ) |
9 | 7, 8 | coeid 25743 |
. . . 4
β’ (πΉ β (Polyβπ) β πΉ = (π₯ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· (π₯βπ)))) |
10 | 6, 9 | syl 17 |
. . 3
β’ (π β πΉ = (π₯ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· (π₯βπ)))) |
11 | | oveq1 7412 |
. . . . 5
β’ (π₯ = (πΊβπ§) β (π₯βπ) = ((πΊβπ§)βπ)) |
12 | 11 | oveq2d 7421 |
. . . 4
β’ (π₯ = (πΊβπ§) β (((coeffβπΉ)βπ) Β· (π₯βπ)) = (((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) |
13 | 12 | sumeq2sdv 15646 |
. . 3
β’ (π₯ = (πΊβπ§) β Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· (π₯βπ)) = Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) |
14 | 4, 5, 10, 13 | fmptco 7123 |
. 2
β’ (π β (πΉ β πΊ) = (π§ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)))) |
15 | | dgrcl 25738 |
. . . 4
β’ (πΉ β (Polyβπ) β (degβπΉ) β
β0) |
16 | 6, 15 | syl 17 |
. . 3
β’ (π β (degβπΉ) β
β0) |
17 | | oveq2 7413 |
. . . . . . . 8
β’ (π₯ = 0 β (0...π₯) = (0...0)) |
18 | 17 | sumeq1d 15643 |
. . . . . . 7
β’ (π₯ = 0 β Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = Ξ£π β (0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) |
19 | 18 | mpteq2dv 5249 |
. . . . . 6
β’ (π₯ = 0 β (π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) = (π§ β β β¦ Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)))) |
20 | 19 | eleq1d 2818 |
. . . . 5
β’ (π₯ = 0 β ((π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ) β (π§ β β β¦ Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) |
21 | 20 | imbi2d 340 |
. . . 4
β’ (π₯ = 0 β ((π β (π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)) β (π β (π§ β β β¦ Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)))) |
22 | | oveq2 7413 |
. . . . . . . 8
β’ (π₯ = π β (0...π₯) = (0...π)) |
23 | 22 | sumeq1d 15643 |
. . . . . . 7
β’ (π₯ = π β Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) |
24 | 23 | mpteq2dv 5249 |
. . . . . 6
β’ (π₯ = π β (π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) = (π§ β β β¦ Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)))) |
25 | 24 | eleq1d 2818 |
. . . . 5
β’ (π₯ = π β ((π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ) β (π§ β β β¦ Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) |
26 | 25 | imbi2d 340 |
. . . 4
β’ (π₯ = π β ((π β (π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)) β (π β (π§ β β β¦ Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)))) |
27 | | oveq2 7413 |
. . . . . . . 8
β’ (π₯ = (π + 1) β (0...π₯) = (0...(π + 1))) |
28 | 27 | sumeq1d 15643 |
. . . . . . 7
β’ (π₯ = (π + 1) β Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) |
29 | 28 | mpteq2dv 5249 |
. . . . . 6
β’ (π₯ = (π + 1) β (π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) = (π§ β β β¦ Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)))) |
30 | 29 | eleq1d 2818 |
. . . . 5
β’ (π₯ = (π + 1) β ((π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ) β (π§ β β β¦ Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) |
31 | 30 | imbi2d 340 |
. . . 4
β’ (π₯ = (π + 1) β ((π β (π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)) β (π β (π§ β β β¦ Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)))) |
32 | | oveq2 7413 |
. . . . . . . 8
β’ (π₯ = (degβπΉ) β (0...π₯) = (0...(degβπΉ))) |
33 | 32 | sumeq1d 15643 |
. . . . . . 7
β’ (π₯ = (degβπΉ) β Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) |
34 | 33 | mpteq2dv 5249 |
. . . . . 6
β’ (π₯ = (degβπΉ) β (π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) = (π§ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)))) |
35 | 34 | eleq1d 2818 |
. . . . 5
β’ (π₯ = (degβπΉ) β ((π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ) β (π§ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) |
36 | 35 | imbi2d 340 |
. . . 4
β’ (π₯ = (degβπΉ) β ((π β (π§ β β β¦ Ξ£π β (0...π₯)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)) β (π β (π§ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)))) |
37 | | 0z 12565 |
. . . . . . . . 9
β’ 0 β
β€ |
38 | 4 | exp0d 14101 |
. . . . . . . . . . . 12
β’ ((π β§ π§ β β) β ((πΊβπ§)β0) = 1) |
39 | 38 | oveq2d 7421 |
. . . . . . . . . . 11
β’ ((π β§ π§ β β) β (((coeffβπΉ)β0) Β· ((πΊβπ§)β0)) = (((coeffβπΉ)β0) Β· 1)) |
40 | | plybss 25699 |
. . . . . . . . . . . . . . . 16
β’ (πΉ β (Polyβπ) β π β β) |
41 | 6, 40 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β π β β) |
42 | | 0cnd 11203 |
. . . . . . . . . . . . . . . 16
β’ (π β 0 β
β) |
43 | 42 | snssd 4811 |
. . . . . . . . . . . . . . 15
β’ (π β {0} β
β) |
44 | 41, 43 | unssd 4185 |
. . . . . . . . . . . . . 14
β’ (π β (π βͺ {0}) β
β) |
45 | 7 | coef 25735 |
. . . . . . . . . . . . . . . 16
β’ (πΉ β (Polyβπ) β (coeffβπΉ):β0βΆ(π βͺ {0})) |
46 | 6, 45 | syl 17 |
. . . . . . . . . . . . . . 15
β’ (π β (coeffβπΉ):β0βΆ(π βͺ {0})) |
47 | | 0nn0 12483 |
. . . . . . . . . . . . . . 15
β’ 0 β
β0 |
48 | | ffvelcdm 7080 |
. . . . . . . . . . . . . . 15
β’
(((coeffβπΉ):β0βΆ(π βͺ {0}) β§ 0 β
β0) β ((coeffβπΉ)β0) β (π βͺ {0})) |
49 | 46, 47, 48 | sylancl 586 |
. . . . . . . . . . . . . 14
β’ (π β ((coeffβπΉ)β0) β (π βͺ {0})) |
50 | 44, 49 | sseldd 3982 |
. . . . . . . . . . . . 13
β’ (π β ((coeffβπΉ)β0) β
β) |
51 | 50 | adantr 481 |
. . . . . . . . . . . 12
β’ ((π β§ π§ β β) β ((coeffβπΉ)β0) β
β) |
52 | 51 | mulridd 11227 |
. . . . . . . . . . 11
β’ ((π β§ π§ β β) β (((coeffβπΉ)β0) Β· 1) =
((coeffβπΉ)β0)) |
53 | 39, 52 | eqtrd 2772 |
. . . . . . . . . 10
β’ ((π β§ π§ β β) β (((coeffβπΉ)β0) Β· ((πΊβπ§)β0)) = ((coeffβπΉ)β0)) |
54 | 53, 51 | eqeltrd 2833 |
. . . . . . . . 9
β’ ((π β§ π§ β β) β (((coeffβπΉ)β0) Β· ((πΊβπ§)β0)) β β) |
55 | | fveq2 6888 |
. . . . . . . . . . 11
β’ (π = 0 β ((coeffβπΉ)βπ) = ((coeffβπΉ)β0)) |
56 | | oveq2 7413 |
. . . . . . . . . . 11
β’ (π = 0 β ((πΊβπ§)βπ) = ((πΊβπ§)β0)) |
57 | 55, 56 | oveq12d 7423 |
. . . . . . . . . 10
β’ (π = 0 β (((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = (((coeffβπΉ)β0) Β· ((πΊβπ§)β0))) |
58 | 57 | fsum1 15689 |
. . . . . . . . 9
β’ ((0
β β€ β§ (((coeffβπΉ)β0) Β· ((πΊβπ§)β0)) β β) β
Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = (((coeffβπΉ)β0) Β· ((πΊβπ§)β0))) |
59 | 37, 54, 58 | sylancr 587 |
. . . . . . . 8
β’ ((π β§ π§ β β) β Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = (((coeffβπΉ)β0) Β· ((πΊβπ§)β0))) |
60 | 59, 53 | eqtrd 2772 |
. . . . . . 7
β’ ((π β§ π§ β β) β Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = ((coeffβπΉ)β0)) |
61 | 60 | mpteq2dva 5247 |
. . . . . 6
β’ (π β (π§ β β β¦ Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) = (π§ β β β¦ ((coeffβπΉ)β0))) |
62 | | fconstmpt 5736 |
. . . . . 6
β’ (β
Γ {((coeffβπΉ)β0)}) = (π§ β β β¦ ((coeffβπΉ)β0)) |
63 | 61, 62 | eqtr4di 2790 |
. . . . 5
β’ (π β (π§ β β β¦ Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) = (β Γ {((coeffβπΉ)β0)})) |
64 | | plyconst 25711 |
. . . . . . 7
β’ (((π βͺ {0}) β β
β§ ((coeffβπΉ)β0) β (π βͺ {0})) β (β Γ
{((coeffβπΉ)β0)}) β (Polyβ(π βͺ {0}))) |
65 | 44, 49, 64 | syl2anc 584 |
. . . . . 6
β’ (π β (β Γ
{((coeffβπΉ)β0)}) β (Polyβ(π βͺ {0}))) |
66 | | plyun0 25702 |
. . . . . 6
β’
(Polyβ(π βͺ
{0})) = (Polyβπ) |
67 | 65, 66 | eleqtrdi 2843 |
. . . . 5
β’ (π β (β Γ
{((coeffβπΉ)β0)}) β (Polyβπ)) |
68 | 63, 67 | eqeltrd 2833 |
. . . 4
β’ (π β (π§ β β β¦ Ξ£π β
(0...0)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)) |
69 | | simprr 771 |
. . . . . . . . 9
β’ ((π β§ (π β β0 β§ (π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) β (π§ β β β¦ Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)) |
70 | 44 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β0) β (π βͺ {0}) β
β) |
71 | | peano2nn0 12508 |
. . . . . . . . . . . . . 14
β’ (π β β0
β (π + 1) β
β0) |
72 | | ffvelcdm 7080 |
. . . . . . . . . . . . . 14
β’
(((coeffβπΉ):β0βΆ(π βͺ {0}) β§ (π + 1) β
β0) β ((coeffβπΉ)β(π + 1)) β (π βͺ {0})) |
73 | 46, 71, 72 | syl2an 596 |
. . . . . . . . . . . . 13
β’ ((π β§ π β β0) β
((coeffβπΉ)β(π + 1)) β (π βͺ {0})) |
74 | | plyconst 25711 |
. . . . . . . . . . . . 13
β’ (((π βͺ {0}) β β
β§ ((coeffβπΉ)β(π + 1)) β (π βͺ {0})) β (β Γ
{((coeffβπΉ)β(π + 1))}) β (Polyβ(π βͺ {0}))) |
75 | 70, 73, 74 | syl2anc 584 |
. . . . . . . . . . . 12
β’ ((π β§ π β β0) β (β
Γ {((coeffβπΉ)β(π + 1))}) β (Polyβ(π βͺ {0}))) |
76 | 75, 66 | eleqtrdi 2843 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β (β
Γ {((coeffβπΉ)β(π + 1))}) β (Polyβπ)) |
77 | | nn0p1nn 12507 |
. . . . . . . . . . . . 13
β’ (π β β0
β (π + 1) β
β) |
78 | | oveq2 7413 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ = 1 β ((πΊβπ§)βπ₯) = ((πΊβπ§)β1)) |
79 | 78 | mpteq2dv 5249 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = 1 β (π§ β β β¦ ((πΊβπ§)βπ₯)) = (π§ β β β¦ ((πΊβπ§)β1))) |
80 | 79 | eleq1d 2818 |
. . . . . . . . . . . . . . 15
β’ (π₯ = 1 β ((π§ β β β¦ ((πΊβπ§)βπ₯)) β (Polyβπ) β (π§ β β β¦ ((πΊβπ§)β1)) β (Polyβπ))) |
81 | 80 | imbi2d 340 |
. . . . . . . . . . . . . 14
β’ (π₯ = 1 β ((π β (π§ β β β¦ ((πΊβπ§)βπ₯)) β (Polyβπ)) β (π β (π§ β β β¦ ((πΊβπ§)β1)) β (Polyβπ)))) |
82 | | oveq2 7413 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ = π β ((πΊβπ§)βπ₯) = ((πΊβπ§)βπ)) |
83 | 82 | mpteq2dv 5249 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = π β (π§ β β β¦ ((πΊβπ§)βπ₯)) = (π§ β β β¦ ((πΊβπ§)βπ))) |
84 | 83 | eleq1d 2818 |
. . . . . . . . . . . . . . 15
β’ (π₯ = π β ((π§ β β β¦ ((πΊβπ§)βπ₯)) β (Polyβπ) β (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ))) |
85 | 84 | imbi2d 340 |
. . . . . . . . . . . . . 14
β’ (π₯ = π β ((π β (π§ β β β¦ ((πΊβπ§)βπ₯)) β (Polyβπ)) β (π β (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ)))) |
86 | | oveq2 7413 |
. . . . . . . . . . . . . . . . 17
β’ (π₯ = (π + 1) β ((πΊβπ§)βπ₯) = ((πΊβπ§)β(π + 1))) |
87 | 86 | mpteq2dv 5249 |
. . . . . . . . . . . . . . . 16
β’ (π₯ = (π + 1) β (π§ β β β¦ ((πΊβπ§)βπ₯)) = (π§ β β β¦ ((πΊβπ§)β(π + 1)))) |
88 | 87 | eleq1d 2818 |
. . . . . . . . . . . . . . 15
β’ (π₯ = (π + 1) β ((π§ β β β¦ ((πΊβπ§)βπ₯)) β (Polyβπ) β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ))) |
89 | 88 | imbi2d 340 |
. . . . . . . . . . . . . 14
β’ (π₯ = (π + 1) β ((π β (π§ β β β¦ ((πΊβπ§)βπ₯)) β (Polyβπ)) β (π β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ)))) |
90 | 4 | exp1d 14102 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π§ β β) β ((πΊβπ§)β1) = (πΊβπ§)) |
91 | 90 | mpteq2dva 5247 |
. . . . . . . . . . . . . . . 16
β’ (π β (π§ β β β¦ ((πΊβπ§)β1)) = (π§ β β β¦ (πΊβπ§))) |
92 | 91, 5 | eqtr4d 2775 |
. . . . . . . . . . . . . . 15
β’ (π β (π§ β β β¦ ((πΊβπ§)β1)) = πΊ) |
93 | 92, 1 | eqeltrd 2833 |
. . . . . . . . . . . . . 14
β’ (π β (π§ β β β¦ ((πΊβπ§)β1)) β (Polyβπ)) |
94 | | simprr 771 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ))) β (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ)) |
95 | 1 | adantr 481 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ (π β β β§ (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ))) β πΊ β (Polyβπ)) |
96 | | plyco.3 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
97 | 96 | adantlr 713 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (π β β β§ (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ))) β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
98 | | plyco.4 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ Β· π¦) β π) |
99 | 98 | adantlr 713 |
. . . . . . . . . . . . . . . . . . 19
β’ (((π β§ (π β β β§ (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ))) β§ (π₯ β π β§ π¦ β π)) β (π₯ Β· π¦) β π) |
100 | 94, 95, 97, 99 | plymul 25723 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ (π β β β§ (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ))) β ((π§ β β β¦ ((πΊβπ§)βπ)) βf Β· πΊ) β (Polyβπ)) |
101 | 100 | expr 457 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β β) β ((π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ) β ((π§ β β β¦ ((πΊβπ§)βπ)) βf Β· πΊ) β (Polyβπ))) |
102 | | cnex 11187 |
. . . . . . . . . . . . . . . . . . . . 21
β’ β
β V |
103 | 102 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β β) β β β
V) |
104 | | ovexd 7440 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β β) β§ π§ β β) β ((πΊβπ§)βπ) β V) |
105 | 4 | adantlr 713 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β β) β§ π§ β β) β (πΊβπ§) β β) |
106 | | eqidd 2733 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β β) β (π§ β β β¦ ((πΊβπ§)βπ)) = (π§ β β β¦ ((πΊβπ§)βπ))) |
107 | 5 | adantr 481 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π β§ π β β) β πΊ = (π§ β β β¦ (πΊβπ§))) |
108 | 103, 104,
105, 106, 107 | offval2 7686 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β β) β ((π§ β β β¦ ((πΊβπ§)βπ)) βf Β· πΊ) = (π§ β β β¦ (((πΊβπ§)βπ) Β· (πΊβπ§)))) |
109 | | nnnn0 12475 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (π β β β π β
β0) |
110 | 109 | ad2antlr 725 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (((π β§ π β β) β§ π§ β β) β π β β0) |
111 | 105, 110 | expp1d 14108 |
. . . . . . . . . . . . . . . . . . . 20
β’ (((π β§ π β β) β§ π§ β β) β ((πΊβπ§)β(π + 1)) = (((πΊβπ§)βπ) Β· (πΊβπ§))) |
112 | 111 | mpteq2dva 5247 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π β§ π β β) β (π§ β β β¦ ((πΊβπ§)β(π + 1))) = (π§ β β β¦ (((πΊβπ§)βπ) Β· (πΊβπ§)))) |
113 | 108, 112 | eqtr4d 2775 |
. . . . . . . . . . . . . . . . . 18
β’ ((π β§ π β β) β ((π§ β β β¦ ((πΊβπ§)βπ)) βf Β· πΊ) = (π§ β β β¦ ((πΊβπ§)β(π + 1)))) |
114 | 113 | eleq1d 2818 |
. . . . . . . . . . . . . . . . 17
β’ ((π β§ π β β) β (((π§ β β β¦ ((πΊβπ§)βπ)) βf Β· πΊ) β (Polyβπ) β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ))) |
115 | 101, 114 | sylibd 238 |
. . . . . . . . . . . . . . . 16
β’ ((π β§ π β β) β ((π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ) β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ))) |
116 | 115 | expcom 414 |
. . . . . . . . . . . . . . 15
β’ (π β β β (π β ((π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ) β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ)))) |
117 | 116 | a2d 29 |
. . . . . . . . . . . . . 14
β’ (π β β β ((π β (π§ β β β¦ ((πΊβπ§)βπ)) β (Polyβπ)) β (π β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ)))) |
118 | 81, 85, 89, 89, 93, 117 | nnind 12226 |
. . . . . . . . . . . . 13
β’ ((π + 1) β β β
(π β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ))) |
119 | 77, 118 | syl 17 |
. . . . . . . . . . . 12
β’ (π β β0
β (π β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ))) |
120 | 119 | impcom 408 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β (π§ β β β¦ ((πΊβπ§)β(π + 1))) β (Polyβπ)) |
121 | 96 | adantlr 713 |
. . . . . . . . . . 11
β’ (((π β§ π β β0) β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
122 | 98 | adantlr 713 |
. . . . . . . . . . 11
β’ (((π β§ π β β0) β§ (π₯ β π β§ π¦ β π)) β (π₯ Β· π¦) β π) |
123 | 76, 120, 121, 122 | plymul 25723 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β ((β
Γ {((coeffβπΉ)β(π + 1))}) βf Β· (π§ β β β¦ ((πΊβπ§)β(π + 1)))) β (Polyβπ)) |
124 | 123 | adantrr 715 |
. . . . . . . . 9
β’ ((π β§ (π β β0 β§ (π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) β ((β Γ
{((coeffβπΉ)β(π + 1))}) βf Β· (π§ β β β¦ ((πΊβπ§)β(π + 1)))) β (Polyβπ)) |
125 | 96 | adantlr 713 |
. . . . . . . . 9
β’ (((π β§ (π β β0 β§ (π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
126 | 69, 124, 125 | plyadd 25722 |
. . . . . . . 8
β’ ((π β§ (π β β0 β§ (π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) β ((π§ β β β¦ Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) βf + ((β Γ
{((coeffβπΉ)β(π + 1))}) βf Β· (π§ β β β¦ ((πΊβπ§)β(π + 1))))) β (Polyβπ)) |
127 | 126 | expr 457 |
. . . . . . 7
β’ ((π β§ π β β0) β ((π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ) β ((π§ β β β¦ Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) βf + ((β Γ
{((coeffβπΉ)β(π + 1))}) βf Β· (π§ β β β¦ ((πΊβπ§)β(π + 1))))) β (Polyβπ))) |
128 | 102 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β β
β V) |
129 | | sumex 15630 |
. . . . . . . . . . 11
β’
Ξ£π β
(0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) β V |
130 | 129 | a1i 11 |
. . . . . . . . . 10
β’ (((π β§ π β β0) β§ π§ β β) β
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) β V) |
131 | | ovexd 7440 |
. . . . . . . . . 10
β’ (((π β§ π β β0) β§ π§ β β) β
(((coeffβπΉ)β(π + 1)) Β· ((πΊβπ§)β(π + 1))) β V) |
132 | | eqidd 2733 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β (π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) = (π§ β β β¦ Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)))) |
133 | | fvexd 6903 |
. . . . . . . . . . 11
β’ (((π β§ π β β0) β§ π§ β β) β
((coeffβπΉ)β(π + 1)) β V) |
134 | | ovexd 7440 |
. . . . . . . . . . 11
β’ (((π β§ π β β0) β§ π§ β β) β ((πΊβπ§)β(π + 1)) β V) |
135 | | fconstmpt 5736 |
. . . . . . . . . . . 12
β’ (β
Γ {((coeffβπΉ)β(π + 1))}) = (π§ β β β¦ ((coeffβπΉ)β(π + 1))) |
136 | 135 | a1i 11 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β (β
Γ {((coeffβπΉ)β(π + 1))}) = (π§ β β β¦ ((coeffβπΉ)β(π + 1)))) |
137 | | eqidd 2733 |
. . . . . . . . . . 11
β’ ((π β§ π β β0) β (π§ β β β¦ ((πΊβπ§)β(π + 1))) = (π§ β β β¦ ((πΊβπ§)β(π + 1)))) |
138 | 128, 133,
134, 136, 137 | offval2 7686 |
. . . . . . . . . 10
β’ ((π β§ π β β0) β ((β
Γ {((coeffβπΉ)β(π + 1))}) βf Β· (π§ β β β¦ ((πΊβπ§)β(π + 1)))) = (π§ β β β¦ (((coeffβπΉ)β(π + 1)) Β· ((πΊβπ§)β(π + 1))))) |
139 | 128, 130,
131, 132, 138 | offval2 7686 |
. . . . . . . . 9
β’ ((π β§ π β β0) β ((π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) βf + ((β Γ
{((coeffβπΉ)β(π + 1))}) βf Β· (π§ β β β¦ ((πΊβπ§)β(π + 1))))) = (π§ β β β¦ (Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) + (((coeffβπΉ)β(π + 1)) Β· ((πΊβπ§)β(π + 1)))))) |
140 | | simplr 767 |
. . . . . . . . . . . 12
β’ (((π β§ π β β0) β§ π§ β β) β π β
β0) |
141 | | nn0uz 12860 |
. . . . . . . . . . . 12
β’
β0 = (β€β₯β0) |
142 | 140, 141 | eleqtrdi 2843 |
. . . . . . . . . . 11
β’ (((π β§ π β β0) β§ π§ β β) β π β
(β€β₯β0)) |
143 | 7 | coef3 25737 |
. . . . . . . . . . . . . . 15
β’ (πΉ β (Polyβπ) β (coeffβπΉ):β0βΆβ) |
144 | 6, 143 | syl 17 |
. . . . . . . . . . . . . 14
β’ (π β (coeffβπΉ):β0βΆβ) |
145 | 144 | ad2antrr 724 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β0) β§ π§ β β) β
(coeffβπΉ):β0βΆβ) |
146 | | elfznn0 13590 |
. . . . . . . . . . . . 13
β’ (π β (0...(π + 1)) β π β β0) |
147 | | ffvelcdm 7080 |
. . . . . . . . . . . . 13
β’
(((coeffβπΉ):β0βΆβ β§
π β
β0) β ((coeffβπΉ)βπ) β β) |
148 | 145, 146,
147 | syl2an 596 |
. . . . . . . . . . . 12
β’ ((((π β§ π β β0) β§ π§ β β) β§ π β (0...(π + 1))) β ((coeffβπΉ)βπ) β β) |
149 | 4 | adantlr 713 |
. . . . . . . . . . . . 13
β’ (((π β§ π β β0) β§ π§ β β) β (πΊβπ§) β β) |
150 | | expcl 14041 |
. . . . . . . . . . . . 13
β’ (((πΊβπ§) β β β§ π β β0) β ((πΊβπ§)βπ) β β) |
151 | 149, 146,
150 | syl2an 596 |
. . . . . . . . . . . 12
β’ ((((π β§ π β β0) β§ π§ β β) β§ π β (0...(π + 1))) β ((πΊβπ§)βπ) β β) |
152 | 148, 151 | mulcld 11230 |
. . . . . . . . . . 11
β’ ((((π β§ π β β0) β§ π§ β β) β§ π β (0...(π + 1))) β (((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) β β) |
153 | | fveq2 6888 |
. . . . . . . . . . . 12
β’ (π = (π + 1) β ((coeffβπΉ)βπ) = ((coeffβπΉ)β(π + 1))) |
154 | | oveq2 7413 |
. . . . . . . . . . . 12
β’ (π = (π + 1) β ((πΊβπ§)βπ) = ((πΊβπ§)β(π + 1))) |
155 | 153, 154 | oveq12d 7423 |
. . . . . . . . . . 11
β’ (π = (π + 1) β (((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = (((coeffβπΉ)β(π + 1)) Β· ((πΊβπ§)β(π + 1)))) |
156 | 142, 152,
155 | fsump1 15698 |
. . . . . . . . . 10
β’ (((π β§ π β β0) β§ π§ β β) β
Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) = (Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) + (((coeffβπΉ)β(π + 1)) Β· ((πΊβπ§)β(π + 1))))) |
157 | 156 | mpteq2dva 5247 |
. . . . . . . . 9
β’ ((π β§ π β β0) β (π§ β β β¦
Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) = (π§ β β β¦ (Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)) + (((coeffβπΉ)β(π + 1)) Β· ((πΊβπ§)β(π + 1)))))) |
158 | 139, 157 | eqtr4d 2775 |
. . . . . . . 8
β’ ((π β§ π β β0) β ((π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) βf + ((β Γ
{((coeffβπΉ)β(π + 1))}) βf Β· (π§ β β β¦ ((πΊβπ§)β(π + 1))))) = (π§ β β β¦ Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ)))) |
159 | 158 | eleq1d 2818 |
. . . . . . 7
β’ ((π β§ π β β0) β (((π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) βf + ((β Γ
{((coeffβπΉ)β(π + 1))}) βf Β· (π§ β β β¦ ((πΊβπ§)β(π + 1))))) β (Polyβπ) β (π§ β β β¦ Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) |
160 | 127, 159 | sylibd 238 |
. . . . . 6
β’ ((π β§ π β β0) β ((π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ) β (π§ β β β¦ Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) |
161 | 160 | expcom 414 |
. . . . 5
β’ (π β β0
β (π β ((π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ) β (π§ β β β¦ Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)))) |
162 | 161 | a2d 29 |
. . . 4
β’ (π β β0
β ((π β (π§ β β β¦
Ξ£π β (0...π)(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)) β (π β (π§ β β β¦ Ξ£π β (0...(π + 1))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)))) |
163 | 21, 26, 31, 36, 68, 162 | nn0ind 12653 |
. . 3
β’
((degβπΉ)
β β0 β (π β (π§ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ))) |
164 | 16, 163 | mpcom 38 |
. 2
β’ (π β (π§ β β β¦ Ξ£π β (0...(degβπΉ))(((coeffβπΉ)βπ) Β· ((πΊβπ§)βπ))) β (Polyβπ)) |
165 | 14, 164 | eqeltrd 2833 |
1
β’ (π β (πΉ β πΊ) β (Polyβπ)) |