![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyssc | Structured version Visualization version GIF version |
Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4397 | . . 3 ⊢ ∅ ⊆ (Poly‘ℂ) | |
2 | sseq1 4008 | . . 3 ⊢ ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ))) | |
3 | 1, 2 | mpbiri 257 | . 2 ⊢ ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
4 | n0 4347 | . . 3 ⊢ ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆)) | |
5 | plybss 25942 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
6 | ssid 4005 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
7 | plyss 25947 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
8 | 5, 6, 7 | sylancl 584 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
9 | 8 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
10 | 4, 9 | sylbi 216 | . 2 ⊢ ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
11 | 3, 10 | pm2.61ine 3023 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1779 ∈ wcel 2104 ≠ wne 2938 ⊆ wss 3949 ∅c0 4323 ‘cfv 6544 ℂcc 11112 Polycply 25932 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-1cn 11172 ax-addcl 11174 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-map 8826 df-nn 12219 df-n0 12479 df-ply 25936 |
This theorem is referenced by: plyaddcl 25968 plymulcl 25969 plysubcl 25970 coeval 25971 coeeu 25973 dgrval 25976 coef3 25980 coeidlem 25985 coemulc 26003 coesub 26005 dgrmulc 26019 dgrsub 26020 dgrcolem1 26021 dgrcolem2 26022 dgrco 26023 coecj 26026 dvply2 26033 dvnply 26035 quotval 26039 quotlem 26047 quotcl2 26049 quotdgr 26050 plyrem 26052 facth 26053 fta1 26055 quotcan 26056 vieta1lem1 26057 vieta1 26059 plyexmo 26060 ftalem7 26817 dgrsub2 42181 |
Copyright terms: Public domain | W3C validator |