![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyssc | Structured version Visualization version GIF version |
Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4389 | . . 3 ⊢ ∅ ⊆ (Poly‘ℂ) | |
2 | sseq1 4000 | . . 3 ⊢ ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ))) | |
3 | 1, 2 | mpbiri 258 | . 2 ⊢ ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
4 | n0 4339 | . . 3 ⊢ ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆)) | |
5 | plybss 26050 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
6 | ssid 3997 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
7 | plyss 26055 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
8 | 5, 6, 7 | sylancl 585 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
9 | 8 | exlimiv 1925 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
10 | 4, 9 | sylbi 216 | . 2 ⊢ ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
11 | 3, 10 | pm2.61ine 3017 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ⊆ wss 3941 ∅c0 4315 ‘cfv 6534 ℂcc 11105 Polycply 26040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-1cn 11165 ax-addcl 11167 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-map 8819 df-nn 12211 df-n0 12471 df-ply 26044 |
This theorem is referenced by: plyaddcl 26076 plymulcl 26077 plysubcl 26078 coeval 26079 coeeu 26081 dgrval 26084 coef3 26088 coeidlem 26093 coemulc 26111 coesub 26113 dgrmulc 26128 dgrsub 26129 dgrcolem1 26130 dgrcolem2 26131 dgrco 26132 coecj 26135 dvply2 26142 dvnply 26144 quotval 26148 quotlem 26156 quotcl2 26158 quotdgr 26159 plyrem 26161 facth 26162 fta1 26164 quotcan 26165 vieta1lem1 26166 vieta1 26168 plyexmo 26169 ftalem7 26930 dgrsub2 42391 |
Copyright terms: Public domain | W3C validator |