MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyssc Structured version   Visualization version   GIF version

Theorem plyssc 25266
Description: Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyssc (Poly‘𝑆) ⊆ (Poly‘ℂ)

Proof of Theorem plyssc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ss 4327 . . 3 ∅ ⊆ (Poly‘ℂ)
2 sseq1 3942 . . 3 ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ)))
31, 2mpbiri 257 . 2 ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ))
4 n0 4277 . . 3 ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆))
5 plybss 25260 . . . . 5 (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
6 ssid 3939 . . . . 5 ℂ ⊆ ℂ
7 plyss 25265 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
85, 6, 7sylancl 585 . . . 4 (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
98exlimiv 1934 . . 3 (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
104, 9sylbi 216 . 2 ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ))
113, 10pm2.61ine 3027 1 (Poly‘𝑆) ⊆ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wex 1783  wcel 2108  wne 2942  wss 3883  c0 4253  cfv 6418  cc 10800  Polycply 25250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-1cn 10860  ax-addcl 10862
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-map 8575  df-nn 11904  df-n0 12164  df-ply 25254
This theorem is referenced by:  plyaddcl  25286  plymulcl  25287  plysubcl  25288  coeval  25289  coeeu  25291  dgrval  25294  coef3  25298  coeidlem  25303  coemulc  25321  coesub  25323  dgrmulc  25337  dgrsub  25338  dgrcolem1  25339  dgrcolem2  25340  dgrco  25341  coecj  25344  dvply2  25351  dvnply  25353  quotval  25357  quotlem  25365  quotcl2  25367  quotdgr  25368  plyrem  25370  facth  25371  fta1  25373  quotcan  25374  vieta1lem1  25375  vieta1  25377  plyexmo  25378  ftalem7  26133  dgrsub2  40876
  Copyright terms: Public domain W3C validator