MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyssc Structured version   Visualization version   GIF version

Theorem plyssc 26056
Description: Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyssc (Poly‘𝑆) ⊆ (Poly‘ℂ)

Proof of Theorem plyssc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ss 4389 . . 3 ∅ ⊆ (Poly‘ℂ)
2 sseq1 4000 . . 3 ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ)))
31, 2mpbiri 258 . 2 ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ))
4 n0 4339 . . 3 ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆))
5 plybss 26050 . . . . 5 (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
6 ssid 3997 . . . . 5 ℂ ⊆ ℂ
7 plyss 26055 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
85, 6, 7sylancl 585 . . . 4 (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
98exlimiv 1925 . . 3 (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
104, 9sylbi 216 . 2 ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ))
113, 10pm2.61ine 3017 1 (Poly‘𝑆) ⊆ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  wex 1773  wcel 2098  wne 2932  wss 3941  c0 4315  cfv 6534  cc 11105  Polycply 26040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-1cn 11165  ax-addcl 11167
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-map 8819  df-nn 12211  df-n0 12471  df-ply 26044
This theorem is referenced by:  plyaddcl  26076  plymulcl  26077  plysubcl  26078  coeval  26079  coeeu  26081  dgrval  26084  coef3  26088  coeidlem  26093  coemulc  26111  coesub  26113  dgrmulc  26128  dgrsub  26129  dgrcolem1  26130  dgrcolem2  26131  dgrco  26132  coecj  26135  dvply2  26142  dvnply  26144  quotval  26148  quotlem  26156  quotcl2  26158  quotdgr  26159  plyrem  26161  facth  26162  fta1  26164  quotcan  26165  vieta1lem1  26166  vieta1  26168  plyexmo  26169  ftalem7  26930  dgrsub2  42391
  Copyright terms: Public domain W3C validator