![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyssc | Structured version Visualization version GIF version |
Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4168 | . . 3 ⊢ ∅ ⊆ (Poly‘ℂ) | |
2 | sseq1 3822 | . . 3 ⊢ ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ))) | |
3 | 1, 2 | mpbiri 250 | . 2 ⊢ ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
4 | n0 4131 | . . 3 ⊢ ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆)) | |
5 | plybss 24291 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
6 | ssid 3819 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
7 | plyss 24296 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
8 | 5, 6, 7 | sylancl 581 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
9 | 8 | exlimiv 2026 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
10 | 4, 9 | sylbi 209 | . 2 ⊢ ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
11 | 3, 10 | pm2.61ine 3054 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∃wex 1875 ∈ wcel 2157 ≠ wne 2971 ⊆ wss 3769 ∅c0 4115 ‘cfv 6101 ℂcc 10222 Polycply 24281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-1cn 10282 ax-addcl 10284 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-map 8097 df-nn 11313 df-n0 11581 df-ply 24285 |
This theorem is referenced by: plyaddcl 24317 plymulcl 24318 plysubcl 24319 coeval 24320 coeeu 24322 dgrval 24325 coef3 24329 coeidlem 24334 coemulc 24352 coesub 24354 dgrmulc 24368 dgrsub 24369 dgrcolem1 24370 dgrcolem2 24371 dgrco 24372 coecj 24375 dvply2 24382 dvnply 24384 quotval 24388 quotlem 24396 quotcl2 24398 quotdgr 24399 plyrem 24401 facth 24402 fta1 24404 quotcan 24405 vieta1lem1 24406 vieta1 24408 plyexmo 24409 ftalem7 25157 dgrsub2 38490 |
Copyright terms: Public domain | W3C validator |