MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyssc Structured version   Visualization version   GIF version

Theorem plyssc 26254
Description: Every polynomial ring is contained in the ring of polynomials over . (Contributed by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
plyssc (Poly‘𝑆) ⊆ (Poly‘ℂ)

Proof of Theorem plyssc
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 0ss 4406 . . 3 ∅ ⊆ (Poly‘ℂ)
2 sseq1 4021 . . 3 ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ)))
31, 2mpbiri 258 . 2 ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ))
4 n0 4359 . . 3 ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆))
5 plybss 26248 . . . . 5 (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
6 ssid 4018 . . . . 5 ℂ ⊆ ℂ
7 plyss 26253 . . . . 5 ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
85, 6, 7sylancl 586 . . . 4 (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
98exlimiv 1928 . . 3 (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ))
104, 9sylbi 217 . 2 ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ))
113, 10pm2.61ine 3023 1 (Poly‘𝑆) ⊆ (Poly‘ℂ)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wex 1776  wcel 2106  wne 2938  wss 3963  c0 4339  cfv 6563  cc 11151  Polycply 26238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-1cn 11211  ax-addcl 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-map 8867  df-nn 12265  df-n0 12525  df-ply 26242
This theorem is referenced by:  plyaddcl  26274  plymulcl  26275  plysubcl  26276  coeval  26277  coeeu  26279  dgrval  26282  coef3  26286  coeidlem  26291  coemulc  26309  coesub  26311  dgrmulc  26326  dgrsub  26327  dgrcolem1  26328  dgrcolem2  26329  dgrco  26330  coecj  26333  coecjOLD  26335  dvply2  26343  dvnply  26345  quotval  26349  quotlem  26357  quotcl2  26359  quotdgr  26360  plyrem  26362  facth  26363  fta1  26365  quotcan  26366  vieta1lem1  26367  vieta1  26369  plyexmo  26370  ftalem7  27137  dgrsub2  43124
  Copyright terms: Public domain W3C validator