| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyssc | Structured version Visualization version GIF version | ||
| Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4351 | . . 3 ⊢ ∅ ⊆ (Poly‘ℂ) | |
| 2 | sseq1 3961 | . . 3 ⊢ ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ))) | |
| 3 | 1, 2 | mpbiri 258 | . 2 ⊢ ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 4 | n0 4304 | . . 3 ⊢ ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆)) | |
| 5 | plybss 26097 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 6 | ssid 3958 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 7 | plyss 26102 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 9 | 8 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 10 | 4, 9 | sylbi 217 | . 2 ⊢ ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 11 | 3, 10 | pm2.61ine 3008 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ⊆ wss 3903 ∅c0 4284 ‘cfv 6482 ℂcc 11007 Polycply 26087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-map 8755 df-nn 12129 df-n0 12385 df-ply 26091 |
| This theorem is referenced by: plyaddcl 26123 plymulcl 26124 plysubcl 26125 coeval 26126 coeeu 26128 dgrval 26131 coef3 26135 coeidlem 26140 coemulc 26158 coesub 26160 dgrmulc 26175 dgrsub 26176 dgrcolem1 26177 dgrcolem2 26178 dgrco 26179 coecj 26182 coecjOLD 26184 dvply2 26192 dvnply 26194 quotval 26198 quotlem 26206 quotcl2 26208 quotdgr 26209 plyrem 26211 facth 26212 fta1 26214 quotcan 26215 vieta1lem1 26216 vieta1 26218 plyexmo 26219 ftalem7 26987 dgrsub2 43128 |
| Copyright terms: Public domain | W3C validator |