Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plyssc | Structured version Visualization version GIF version |
Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ (Poly‘ℂ) | |
2 | sseq1 3946 | . . 3 ⊢ ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ))) | |
3 | 1, 2 | mpbiri 257 | . 2 ⊢ ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
4 | n0 4280 | . . 3 ⊢ ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆)) | |
5 | plybss 25355 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
6 | ssid 3943 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
7 | plyss 25360 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
8 | 5, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
9 | 8 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
10 | 4, 9 | sylbi 216 | . 2 ⊢ ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
11 | 3, 10 | pm2.61ine 3028 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ⊆ wss 3887 ∅c0 4256 ‘cfv 6433 ℂcc 10869 Polycply 25345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-map 8617 df-nn 11974 df-n0 12234 df-ply 25349 |
This theorem is referenced by: plyaddcl 25381 plymulcl 25382 plysubcl 25383 coeval 25384 coeeu 25386 dgrval 25389 coef3 25393 coeidlem 25398 coemulc 25416 coesub 25418 dgrmulc 25432 dgrsub 25433 dgrcolem1 25434 dgrcolem2 25435 dgrco 25436 coecj 25439 dvply2 25446 dvnply 25448 quotval 25452 quotlem 25460 quotcl2 25462 quotdgr 25463 plyrem 25465 facth 25466 fta1 25468 quotcan 25469 vieta1lem1 25470 vieta1 25472 plyexmo 25473 ftalem7 26228 dgrsub2 40960 |
Copyright terms: Public domain | W3C validator |