| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > plyssc | Structured version Visualization version GIF version | ||
| Description: Every polynomial ring is contained in the ring of polynomials over ℂ. (Contributed by Mario Carneiro, 22-Jul-2014.) |
| Ref | Expression |
|---|---|
| plyssc | ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ss 4380 | . . 3 ⊢ ∅ ⊆ (Poly‘ℂ) | |
| 2 | sseq1 3989 | . . 3 ⊢ ((Poly‘𝑆) = ∅ → ((Poly‘𝑆) ⊆ (Poly‘ℂ) ↔ ∅ ⊆ (Poly‘ℂ))) | |
| 3 | 1, 2 | mpbiri 258 | . 2 ⊢ ((Poly‘𝑆) = ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 4 | n0 4333 | . . 3 ⊢ ((Poly‘𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (Poly‘𝑆)) | |
| 5 | plybss 26170 | . . . . 5 ⊢ (𝑓 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
| 6 | ssid 3986 | . . . . 5 ⊢ ℂ ⊆ ℂ | |
| 7 | plyss 26175 | . . . . 5 ⊢ ((𝑆 ⊆ ℂ ∧ ℂ ⊆ ℂ) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) | |
| 8 | 5, 6, 7 | sylancl 586 | . . . 4 ⊢ (𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 9 | 8 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (Poly‘𝑆) → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 10 | 4, 9 | sylbi 217 | . 2 ⊢ ((Poly‘𝑆) ≠ ∅ → (Poly‘𝑆) ⊆ (Poly‘ℂ)) |
| 11 | 3, 10 | pm2.61ine 3014 | 1 ⊢ (Poly‘𝑆) ⊆ (Poly‘ℂ) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ⊆ wss 3931 ∅c0 4313 ‘cfv 6541 ℂcc 11135 Polycply 26160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-1cn 11195 ax-addcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-1st 7996 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-map 8850 df-nn 12249 df-n0 12510 df-ply 26164 |
| This theorem is referenced by: plyaddcl 26196 plymulcl 26197 plysubcl 26198 coeval 26199 coeeu 26201 dgrval 26204 coef3 26208 coeidlem 26213 coemulc 26231 coesub 26233 dgrmulc 26248 dgrsub 26249 dgrcolem1 26250 dgrcolem2 26251 dgrco 26252 coecj 26255 coecjOLD 26257 dvply2 26265 dvnply 26267 quotval 26271 quotlem 26279 quotcl2 26281 quotdgr 26282 plyrem 26284 facth 26285 fta1 26287 quotcan 26288 vieta1lem1 26289 vieta1 26291 plyexmo 26292 ftalem7 27059 dgrsub2 43125 |
| Copyright terms: Public domain | W3C validator |