Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > plyaddlem | Structured version Visualization version GIF version |
Description: Lemma for plyadd 25378. (Contributed by Mario Carneiro, 21-Jul-2014.) |
Ref | Expression |
---|---|
plyadd.1 | ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) |
plyadd.2 | ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) |
plyadd.3 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) |
plyadd.m | ⊢ (𝜑 → 𝑀 ∈ ℕ0) |
plyadd.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
plyadd.a | ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) |
plyadd.b | ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) |
plyadd.a2 | ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) |
plyadd.b2 | ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) |
plyadd.f | ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) |
plyadd.g | ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) |
Ref | Expression |
---|---|
plyaddlem | ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyadd.1 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Poly‘𝑆)) | |
2 | plyadd.2 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Poly‘𝑆)) | |
3 | plyadd.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ0) | |
4 | plyadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
5 | plyadd.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
6 | plybss 25355 | . . . . . . . . . 10 ⊢ (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ) | |
7 | 1, 6 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑆 ⊆ ℂ) |
8 | 0cnd 10968 | . . . . . . . . . 10 ⊢ (𝜑 → 0 ∈ ℂ) | |
9 | 8 | snssd 4742 | . . . . . . . . 9 ⊢ (𝜑 → {0} ⊆ ℂ) |
10 | 7, 9 | unssd 4120 | . . . . . . . 8 ⊢ (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ) |
11 | cnex 10952 | . . . . . . . 8 ⊢ ℂ ∈ V | |
12 | ssexg 5247 | . . . . . . . 8 ⊢ (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V) | |
13 | 10, 11, 12 | sylancl 586 | . . . . . . 7 ⊢ (𝜑 → (𝑆 ∪ {0}) ∈ V) |
14 | nn0ex 12239 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
15 | elmapg 8628 | . . . . . . 7 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) | |
16 | 13, 14, 15 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0}))) |
17 | 5, 16 | mpbid 231 | . . . . 5 ⊢ (𝜑 → 𝐴:ℕ0⟶(𝑆 ∪ {0})) |
18 | 17, 10 | fssd 6618 | . . . 4 ⊢ (𝜑 → 𝐴:ℕ0⟶ℂ) |
19 | plyadd.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0)) | |
20 | elmapg 8628 | . . . . . . 7 ⊢ (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) | |
21 | 13, 14, 20 | sylancl 586 | . . . . . 6 ⊢ (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m ℕ0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0}))) |
22 | 19, 21 | mpbid 231 | . . . . 5 ⊢ (𝜑 → 𝐵:ℕ0⟶(𝑆 ∪ {0})) |
23 | 22, 10 | fssd 6618 | . . . 4 ⊢ (𝜑 → 𝐵:ℕ0⟶ℂ) |
24 | plyadd.a2 | . . . 4 ⊢ (𝜑 → (𝐴 “ (ℤ≥‘(𝑀 + 1))) = {0}) | |
25 | plyadd.b2 | . . . 4 ⊢ (𝜑 → (𝐵 “ (ℤ≥‘(𝑁 + 1))) = {0}) | |
26 | plyadd.f | . . . 4 ⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴‘𝑘) · (𝑧↑𝑘)))) | |
27 | plyadd.g | . . . 4 ⊢ (𝜑 → 𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵‘𝑘) · (𝑧↑𝑘)))) | |
28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plyaddlem1 25374 | . . 3 ⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘f + 𝐵)‘𝑘) · (𝑧↑𝑘)))) |
29 | 4, 3 | ifcld 4505 | . . . 4 ⊢ (𝜑 → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℕ0) |
30 | eqid 2738 | . . . . . . 7 ⊢ (𝑆 ∪ {0}) = (𝑆 ∪ {0}) | |
31 | plyadd.3 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆)) → (𝑥 + 𝑦) ∈ 𝑆) | |
32 | 7, 30, 31 | un0addcl 12266 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0})) |
33 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℕ0 ∈ V) |
34 | inidm 4152 | . . . . . 6 ⊢ (ℕ0 ∩ ℕ0) = ℕ0 | |
35 | 32, 17, 22, 33, 33, 34 | off 7551 | . . . . 5 ⊢ (𝜑 → (𝐴 ∘f + 𝐵):ℕ0⟶(𝑆 ∪ {0})) |
36 | elfznn0 13349 | . . . . 5 ⊢ (𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0) | |
37 | ffvelrn 6959 | . . . . 5 ⊢ (((𝐴 ∘f + 𝐵):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴 ∘f + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0})) | |
38 | 35, 36, 37 | syl2an 596 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ((𝐴 ∘f + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0})) |
39 | 10, 29, 38 | elplyd 25363 | . . 3 ⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀 ≤ 𝑁, 𝑁, 𝑀))(((𝐴 ∘f + 𝐵)‘𝑘) · (𝑧↑𝑘))) ∈ (Poly‘(𝑆 ∪ {0}))) |
40 | 28, 39 | eqeltrd 2839 | . 2 ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘(𝑆 ∪ {0}))) |
41 | plyun0 25358 | . 2 ⊢ (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆) | |
42 | 40, 41 | eleqtrdi 2849 | 1 ⊢ (𝜑 → (𝐹 ∘f + 𝐺) ∈ (Poly‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 ⊆ wss 3887 ifcif 4459 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 “ cima 5592 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 ↑m cmap 8615 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ≤ cle 11010 ℕ0cn0 12233 ℤ≥cuz 12582 ...cfz 13239 ↑cexp 13782 Σcsu 15397 Polycply 25345 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-sum 15398 df-ply 25349 |
This theorem is referenced by: plyadd 25378 |
Copyright terms: Public domain | W3C validator |