MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  plyaddlem Structured version   Visualization version   GIF version

Theorem plyaddlem 26269
Description: Lemma for plyadd 26271. (Contributed by Mario Carneiro, 21-Jul-2014.)
Hypotheses
Ref Expression
plyadd.1 (𝜑𝐹 ∈ (Poly‘𝑆))
plyadd.2 (𝜑𝐺 ∈ (Poly‘𝑆))
plyadd.3 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plyadd.m (𝜑𝑀 ∈ ℕ0)
plyadd.n (𝜑𝑁 ∈ ℕ0)
plyadd.a (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
plyadd.b (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑m0))
plyadd.a2 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
plyadd.b2 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
plyadd.f (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
plyadd.g (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
Assertion
Ref Expression
plyaddlem (𝜑 → (𝐹f + 𝐺) ∈ (Poly‘𝑆))
Distinct variable groups:   𝑥,𝑘,𝑦,𝑧,𝐵   𝑥,𝐹,𝑦,𝑧   𝑆,𝑘,𝑥,𝑦,𝑧   𝑥,𝐴,𝑦,𝑧   𝑥,𝐺,𝑦,𝑧   𝜑,𝑘,𝑥,𝑦,𝑧   𝑘,𝑀,𝑧   𝑘,𝑁,𝑧
Allowed substitution hints:   𝐴(𝑘)   𝐹(𝑘)   𝐺(𝑘)   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem plyaddlem
StepHypRef Expression
1 plyadd.1 . . . 4 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plyadd.2 . . . 4 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plyadd.m . . . 4 (𝜑𝑀 ∈ ℕ0)
4 plyadd.n . . . 4 (𝜑𝑁 ∈ ℕ0)
5 plyadd.a . . . . . 6 (𝜑𝐴 ∈ ((𝑆 ∪ {0}) ↑m0))
6 plybss 26248 . . . . . . . . . 10 (𝐹 ∈ (Poly‘𝑆) → 𝑆 ⊆ ℂ)
71, 6syl 17 . . . . . . . . 9 (𝜑𝑆 ⊆ ℂ)
8 0cnd 11252 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
98snssd 4814 . . . . . . . . 9 (𝜑 → {0} ⊆ ℂ)
107, 9unssd 4202 . . . . . . . 8 (𝜑 → (𝑆 ∪ {0}) ⊆ ℂ)
11 cnex 11234 . . . . . . . 8 ℂ ∈ V
12 ssexg 5329 . . . . . . . 8 (((𝑆 ∪ {0}) ⊆ ℂ ∧ ℂ ∈ V) → (𝑆 ∪ {0}) ∈ V)
1310, 11, 12sylancl 586 . . . . . . 7 (𝜑 → (𝑆 ∪ {0}) ∈ V)
14 nn0ex 12530 . . . . . . 7 0 ∈ V
15 elmapg 8878 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
1613, 14, 15sylancl 586 . . . . . 6 (𝜑 → (𝐴 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐴:ℕ0⟶(𝑆 ∪ {0})))
175, 16mpbid 232 . . . . 5 (𝜑𝐴:ℕ0⟶(𝑆 ∪ {0}))
1817, 10fssd 6754 . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
19 plyadd.b . . . . . 6 (𝜑𝐵 ∈ ((𝑆 ∪ {0}) ↑m0))
20 elmapg 8878 . . . . . . 7 (((𝑆 ∪ {0}) ∈ V ∧ ℕ0 ∈ V) → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2113, 14, 20sylancl 586 . . . . . 6 (𝜑 → (𝐵 ∈ ((𝑆 ∪ {0}) ↑m0) ↔ 𝐵:ℕ0⟶(𝑆 ∪ {0})))
2219, 21mpbid 232 . . . . 5 (𝜑𝐵:ℕ0⟶(𝑆 ∪ {0}))
2322, 10fssd 6754 . . . 4 (𝜑𝐵:ℕ0⟶ℂ)
24 plyadd.a2 . . . 4 (𝜑 → (𝐴 “ (ℤ‘(𝑀 + 1))) = {0})
25 plyadd.b2 . . . 4 (𝜑 → (𝐵 “ (ℤ‘(𝑁 + 1))) = {0})
26 plyadd.f . . . 4 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑀)((𝐴𝑘) · (𝑧𝑘))))
27 plyadd.g . . . 4 (𝜑𝐺 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑁)((𝐵𝑘) · (𝑧𝑘))))
281, 2, 3, 4, 18, 23, 24, 25, 26, 27plyaddlem1 26267 . . 3 (𝜑 → (𝐹f + 𝐺) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘))))
294, 3ifcld 4577 . . . 4 (𝜑 → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℕ0)
30 eqid 2735 . . . . . . 7 (𝑆 ∪ {0}) = (𝑆 ∪ {0})
31 plyadd.3 . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
327, 30, 31un0addcl 12557 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (𝑆 ∪ {0}) ∧ 𝑦 ∈ (𝑆 ∪ {0}))) → (𝑥 + 𝑦) ∈ (𝑆 ∪ {0}))
3314a1i 11 . . . . . 6 (𝜑 → ℕ0 ∈ V)
34 inidm 4235 . . . . . 6 (ℕ0 ∩ ℕ0) = ℕ0
3532, 17, 22, 33, 33, 34off 7715 . . . . 5 (𝜑 → (𝐴f + 𝐵):ℕ0⟶(𝑆 ∪ {0}))
36 elfznn0 13657 . . . . 5 (𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀)) → 𝑘 ∈ ℕ0)
37 ffvelcdm 7101 . . . . 5 (((𝐴f + 𝐵):ℕ0⟶(𝑆 ∪ {0}) ∧ 𝑘 ∈ ℕ0) → ((𝐴f + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0}))
3835, 36, 37syl2an 596 . . . 4 ((𝜑𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))) → ((𝐴f + 𝐵)‘𝑘) ∈ (𝑆 ∪ {0}))
3910, 29, 38elplyd 26256 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...if(𝑀𝑁, 𝑁, 𝑀))(((𝐴f + 𝐵)‘𝑘) · (𝑧𝑘))) ∈ (Poly‘(𝑆 ∪ {0})))
4028, 39eqeltrd 2839 . 2 (𝜑 → (𝐹f + 𝐺) ∈ (Poly‘(𝑆 ∪ {0})))
41 plyun0 26251 . 2 (Poly‘(𝑆 ∪ {0})) = (Poly‘𝑆)
4240, 41eleqtrdi 2849 1 (𝜑 → (𝐹f + 𝐺) ∈ (Poly‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  cun 3961  wss 3963  ifcif 4531  {csn 4631   class class class wbr 5148  cmpt 5231  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  f cof 7695  m cmap 8865  cc 11151  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cle 11294  0cn0 12524  cuz 12876  ...cfz 13544  cexp 14099  Σcsu 15719  Polycply 26238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-ply 26242
This theorem is referenced by:  plyadd  26271
  Copyright terms: Public domain W3C validator