![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > plyaddlem | Structured version Visualization version GIF version |
Description: Lemma for plyadd 25964. (Contributed by Mario Carneiro, 21-Jul-2014.) |
Ref | Expression |
---|---|
plyadd.1 | β’ (π β πΉ β (Polyβπ)) |
plyadd.2 | β’ (π β πΊ β (Polyβπ)) |
plyadd.3 | β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) |
plyadd.m | β’ (π β π β β0) |
plyadd.n | β’ (π β π β β0) |
plyadd.a | β’ (π β π΄ β ((π βͺ {0}) βm β0)) |
plyadd.b | β’ (π β π΅ β ((π βͺ {0}) βm β0)) |
plyadd.a2 | β’ (π β (π΄ β (β€β₯β(π + 1))) = {0}) |
plyadd.b2 | β’ (π β (π΅ β (β€β₯β(π + 1))) = {0}) |
plyadd.f | β’ (π β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) |
plyadd.g | β’ (π β πΊ = (π§ β β β¦ Ξ£π β (0...π)((π΅βπ) Β· (π§βπ)))) |
Ref | Expression |
---|---|
plyaddlem | β’ (π β (πΉ βf + πΊ) β (Polyβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | plyadd.1 | . . . 4 β’ (π β πΉ β (Polyβπ)) | |
2 | plyadd.2 | . . . 4 β’ (π β πΊ β (Polyβπ)) | |
3 | plyadd.m | . . . 4 β’ (π β π β β0) | |
4 | plyadd.n | . . . 4 β’ (π β π β β0) | |
5 | plyadd.a | . . . . . 6 β’ (π β π΄ β ((π βͺ {0}) βm β0)) | |
6 | plybss 25941 | . . . . . . . . . 10 β’ (πΉ β (Polyβπ) β π β β) | |
7 | 1, 6 | syl 17 | . . . . . . . . 9 β’ (π β π β β) |
8 | 0cnd 11212 | . . . . . . . . . 10 β’ (π β 0 β β) | |
9 | 8 | snssd 4813 | . . . . . . . . 9 β’ (π β {0} β β) |
10 | 7, 9 | unssd 4187 | . . . . . . . 8 β’ (π β (π βͺ {0}) β β) |
11 | cnex 11194 | . . . . . . . 8 β’ β β V | |
12 | ssexg 5324 | . . . . . . . 8 β’ (((π βͺ {0}) β β β§ β β V) β (π βͺ {0}) β V) | |
13 | 10, 11, 12 | sylancl 585 | . . . . . . 7 β’ (π β (π βͺ {0}) β V) |
14 | nn0ex 12483 | . . . . . . 7 β’ β0 β V | |
15 | elmapg 8836 | . . . . . . 7 β’ (((π βͺ {0}) β V β§ β0 β V) β (π΄ β ((π βͺ {0}) βm β0) β π΄:β0βΆ(π βͺ {0}))) | |
16 | 13, 14, 15 | sylancl 585 | . . . . . 6 β’ (π β (π΄ β ((π βͺ {0}) βm β0) β π΄:β0βΆ(π βͺ {0}))) |
17 | 5, 16 | mpbid 231 | . . . . 5 β’ (π β π΄:β0βΆ(π βͺ {0})) |
18 | 17, 10 | fssd 6736 | . . . 4 β’ (π β π΄:β0βΆβ) |
19 | plyadd.b | . . . . . 6 β’ (π β π΅ β ((π βͺ {0}) βm β0)) | |
20 | elmapg 8836 | . . . . . . 7 β’ (((π βͺ {0}) β V β§ β0 β V) β (π΅ β ((π βͺ {0}) βm β0) β π΅:β0βΆ(π βͺ {0}))) | |
21 | 13, 14, 20 | sylancl 585 | . . . . . 6 β’ (π β (π΅ β ((π βͺ {0}) βm β0) β π΅:β0βΆ(π βͺ {0}))) |
22 | 19, 21 | mpbid 231 | . . . . 5 β’ (π β π΅:β0βΆ(π βͺ {0})) |
23 | 22, 10 | fssd 6736 | . . . 4 β’ (π β π΅:β0βΆβ) |
24 | plyadd.a2 | . . . 4 β’ (π β (π΄ β (β€β₯β(π + 1))) = {0}) | |
25 | plyadd.b2 | . . . 4 β’ (π β (π΅ β (β€β₯β(π + 1))) = {0}) | |
26 | plyadd.f | . . . 4 β’ (π β πΉ = (π§ β β β¦ Ξ£π β (0...π)((π΄βπ) Β· (π§βπ)))) | |
27 | plyadd.g | . . . 4 β’ (π β πΊ = (π§ β β β¦ Ξ£π β (0...π)((π΅βπ) Β· (π§βπ)))) | |
28 | 1, 2, 3, 4, 18, 23, 24, 25, 26, 27 | plyaddlem1 25960 | . . 3 β’ (π β (πΉ βf + πΊ) = (π§ β β β¦ Ξ£π β (0...if(π β€ π, π, π))(((π΄ βf + π΅)βπ) Β· (π§βπ)))) |
29 | 4, 3 | ifcld 4575 | . . . 4 β’ (π β if(π β€ π, π, π) β β0) |
30 | eqid 2731 | . . . . . . 7 β’ (π βͺ {0}) = (π βͺ {0}) | |
31 | plyadd.3 | . . . . . . 7 β’ ((π β§ (π₯ β π β§ π¦ β π)) β (π₯ + π¦) β π) | |
32 | 7, 30, 31 | un0addcl 12510 | . . . . . 6 β’ ((π β§ (π₯ β (π βͺ {0}) β§ π¦ β (π βͺ {0}))) β (π₯ + π¦) β (π βͺ {0})) |
33 | 14 | a1i 11 | . . . . . 6 β’ (π β β0 β V) |
34 | inidm 4219 | . . . . . 6 β’ (β0 β© β0) = β0 | |
35 | 32, 17, 22, 33, 33, 34 | off 7691 | . . . . 5 β’ (π β (π΄ βf + π΅):β0βΆ(π βͺ {0})) |
36 | elfznn0 13599 | . . . . 5 β’ (π β (0...if(π β€ π, π, π)) β π β β0) | |
37 | ffvelcdm 7084 | . . . . 5 β’ (((π΄ βf + π΅):β0βΆ(π βͺ {0}) β§ π β β0) β ((π΄ βf + π΅)βπ) β (π βͺ {0})) | |
38 | 35, 36, 37 | syl2an 595 | . . . 4 β’ ((π β§ π β (0...if(π β€ π, π, π))) β ((π΄ βf + π΅)βπ) β (π βͺ {0})) |
39 | 10, 29, 38 | elplyd 25949 | . . 3 β’ (π β (π§ β β β¦ Ξ£π β (0...if(π β€ π, π, π))(((π΄ βf + π΅)βπ) Β· (π§βπ))) β (Polyβ(π βͺ {0}))) |
40 | 28, 39 | eqeltrd 2832 | . 2 β’ (π β (πΉ βf + πΊ) β (Polyβ(π βͺ {0}))) |
41 | plyun0 25944 | . 2 β’ (Polyβ(π βͺ {0})) = (Polyβπ) | |
42 | 40, 41 | eleqtrdi 2842 | 1 β’ (π β (πΉ βf + πΊ) β (Polyβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1540 β wcel 2105 Vcvv 3473 βͺ cun 3947 β wss 3949 ifcif 4529 {csn 4629 class class class wbr 5149 β¦ cmpt 5232 β cima 5680 βΆwf 6540 βcfv 6544 (class class class)co 7412 βf cof 7671 βm cmap 8823 βcc 11111 0cc0 11113 1c1 11114 + caddc 11116 Β· cmul 11118 β€ cle 11254 β0cn0 12477 β€β₯cuz 12827 ...cfz 13489 βcexp 14032 Ξ£csu 15637 Polycply 25931 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 ax-inf2 9639 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-er 8706 df-map 8825 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-sup 9440 df-oi 9508 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-z 12564 df-uz 12828 df-rp 12980 df-fz 13490 df-fzo 13633 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-sum 15638 df-ply 25935 |
This theorem is referenced by: plyadd 25964 |
Copyright terms: Public domain | W3C validator |