MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpdis Structured version   Visualization version   GIF version

Theorem cnpdis 23019
Description: If 𝐴 is an isolated point in 𝑋 (or equivalently, the singleton {𝐴} is open in 𝑋), then every function is continuous at 𝐴. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ ((𝐽 CnP 𝐾)β€˜π΄) = (π‘Œ ↑m 𝑋))

Proof of Theorem cnpdis
Dummy variables π‘₯ 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 773 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ {𝐴} ∈ 𝐽)
2 simpll3 1212 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ 𝐴 ∈ 𝑋)
3 snidg 4663 . . . . . . . . 9 (𝐴 ∈ 𝑋 β†’ 𝐴 ∈ {𝐴})
42, 3syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ 𝐴 ∈ {𝐴})
5 simprr 769 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ (π‘“β€˜π΄) ∈ π‘₯)
6 simplrr 774 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ 𝑓:π‘‹βŸΆπ‘Œ)
7 ffn 6718 . . . . . . . . . . 11 (𝑓:π‘‹βŸΆπ‘Œ β†’ 𝑓 Fn 𝑋)
8 elpreima 7060 . . . . . . . . . . 11 (𝑓 Fn 𝑋 β†’ (𝐴 ∈ (◑𝑓 β€œ π‘₯) ↔ (𝐴 ∈ 𝑋 ∧ (π‘“β€˜π΄) ∈ π‘₯)))
96, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ (𝐴 ∈ (◑𝑓 β€œ π‘₯) ↔ (𝐴 ∈ 𝑋 ∧ (π‘“β€˜π΄) ∈ π‘₯)))
102, 5, 9mpbir2and 709 . . . . . . . . 9 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ 𝐴 ∈ (◑𝑓 β€œ π‘₯))
1110snssd 4813 . . . . . . . 8 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ {𝐴} βŠ† (◑𝑓 β€œ π‘₯))
12 eleq2 2820 . . . . . . . . . 10 (𝑦 = {𝐴} β†’ (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ {𝐴}))
13 sseq1 4008 . . . . . . . . . 10 (𝑦 = {𝐴} β†’ (𝑦 βŠ† (◑𝑓 β€œ π‘₯) ↔ {𝐴} βŠ† (◑𝑓 β€œ π‘₯)))
1412, 13anbi12d 629 . . . . . . . . 9 (𝑦 = {𝐴} β†’ ((𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯)) ↔ (𝐴 ∈ {𝐴} ∧ {𝐴} βŠ† (◑𝑓 β€œ π‘₯))))
1514rspcev 3613 . . . . . . . 8 (({𝐴} ∈ 𝐽 ∧ (𝐴 ∈ {𝐴} ∧ {𝐴} βŠ† (◑𝑓 β€œ π‘₯))) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯)))
161, 4, 11, 15syl12anc 833 . . . . . . 7 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ (π‘₯ ∈ 𝐾 ∧ (π‘“β€˜π΄) ∈ π‘₯)) β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯)))
1716expr 455 . . . . . 6 ((((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) ∧ π‘₯ ∈ 𝐾) β†’ ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))
1817ralrimiva 3144 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ ({𝐴} ∈ 𝐽 ∧ 𝑓:π‘‹βŸΆπ‘Œ)) β†’ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))
1918expr 455 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓:π‘‹βŸΆπ‘Œ β†’ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯)))))
2019pm4.71d 560 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓:π‘‹βŸΆπ‘Œ ↔ (𝑓:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))))
21 simpl2 1190 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ 𝐾 ∈ (TopOnβ€˜π‘Œ))
22 toponmax 22650 . . . . 5 (𝐾 ∈ (TopOnβ€˜π‘Œ) β†’ π‘Œ ∈ 𝐾)
2321, 22syl 17 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ π‘Œ ∈ 𝐾)
24 simpl1 1189 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
25 toponmax 22650 . . . . 5 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
2624, 25syl 17 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ 𝑋 ∈ 𝐽)
2723, 26elmapd 8838 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓 ∈ (π‘Œ ↑m 𝑋) ↔ 𝑓:π‘‹βŸΆπ‘Œ))
28 iscnp3 22970 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) β†’ (𝑓 ∈ ((𝐽 CnP 𝐾)β€˜π΄) ↔ (𝑓:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))))
2928adantr 479 . . 3 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓 ∈ ((𝐽 CnP 𝐾)β€˜π΄) ↔ (𝑓:π‘‹βŸΆπ‘Œ ∧ βˆ€π‘₯ ∈ 𝐾 ((π‘“β€˜π΄) ∈ π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐽 (𝐴 ∈ 𝑦 ∧ 𝑦 βŠ† (◑𝑓 β€œ π‘₯))))))
3020, 27, 293bitr4rd 311 . 2 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ (𝑓 ∈ ((𝐽 CnP 𝐾)β€˜π΄) ↔ 𝑓 ∈ (π‘Œ ↑m 𝑋)))
3130eqrdv 2728 1 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝐾 ∈ (TopOnβ€˜π‘Œ) ∧ 𝐴 ∈ 𝑋) ∧ {𝐴} ∈ 𝐽) β†’ ((𝐽 CnP 𝐾)β€˜π΄) = (π‘Œ ↑m 𝑋))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   ∧ w3a 1085   = wceq 1539   ∈ wcel 2104  βˆ€wral 3059  βˆƒwrex 3068   βŠ† wss 3949  {csn 4629  β—‘ccnv 5676   β€œ cima 5680   Fn wfn 6539  βŸΆwf 6540  β€˜cfv 6544  (class class class)co 7413   ↑m cmap 8824  TopOnctopon 22634   CnP ccnp 22951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-ov 7416  df-oprab 7417  df-mpo 7418  df-map 8826  df-top 22618  df-topon 22635  df-cnp 22954
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator