MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpdis Structured version   Visualization version   GIF version

Theorem cnpdis 22190
Description: If 𝐴 is an isolated point in 𝑋 (or equivalently, the singleton {𝐴} is open in 𝑋), then every function is continuous at 𝐴. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌m 𝑋))

Proof of Theorem cnpdis
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 777 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ∈ 𝐽)
2 simpll3 1216 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴𝑋)
3 snidg 4575 . . . . . . . . 9 (𝐴𝑋𝐴 ∈ {𝐴})
42, 3syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ {𝐴})
5 simprr 773 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝑓𝐴) ∈ 𝑥)
6 simplrr 778 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝑓:𝑋𝑌)
7 ffn 6545 . . . . . . . . . . 11 (𝑓:𝑋𝑌𝑓 Fn 𝑋)
8 elpreima 6878 . . . . . . . . . . 11 (𝑓 Fn 𝑋 → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
96, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
102, 5, 9mpbir2and 713 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ (𝑓𝑥))
1110snssd 4722 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ⊆ (𝑓𝑥))
12 eleq2 2826 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝐴𝑦𝐴 ∈ {𝐴}))
13 sseq1 3926 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ⊆ (𝑓𝑥) ↔ {𝐴} ⊆ (𝑓𝑥)))
1412, 13anbi12d 634 . . . . . . . . 9 (𝑦 = {𝐴} → ((𝐴𝑦𝑦 ⊆ (𝑓𝑥)) ↔ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))))
1514rspcev 3537 . . . . . . . 8 (({𝐴} ∈ 𝐽 ∧ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
161, 4, 11, 15syl12anc 837 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
1716expr 460 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ 𝑥𝐾) → ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1817ralrimiva 3105 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1918expr 460 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))))
2019pm4.71d 565 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
21 simpl2 1194 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑌))
22 toponmax 21823 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
2321, 22syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑌𝐾)
24 simpl1 1193 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 toponmax 21823 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2624, 25syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑋𝐽)
2723, 26elmapd 8522 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
28 iscnp3 22141 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
2928adantr 484 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
3020, 27, 293bitr4rd 315 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ 𝑓 ∈ (𝑌m 𝑋)))
3130eqrdv 2735 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  wrex 3062  wss 3866  {csn 4541  ccnv 5550  cima 5554   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  m cmap 8508  TopOnctopon 21807   CnP ccnp 22122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-top 21791  df-topon 21808  df-cnp 22125
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator