MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpdis Structured version   Visualization version   GIF version

Theorem cnpdis 21308
Description: If 𝐴 is an isolated point in 𝑋 (or equivalently, the singleton {𝐴} is open in 𝑋), then every function is continuous at 𝐴. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌𝑚 𝑋))

Proof of Theorem cnpdis
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 786 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ∈ 𝐽)
2 simpll3 1266 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴𝑋)
3 snidg 4400 . . . . . . . . 9 (𝐴𝑋𝐴 ∈ {𝐴})
42, 3syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ {𝐴})
5 simprr 780 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝑓𝐴) ∈ 𝑥)
6 simplrr 787 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝑓:𝑋𝑌)
7 ffn 6252 . . . . . . . . . . 11 (𝑓:𝑋𝑌𝑓 Fn 𝑋)
8 elpreima 6555 . . . . . . . . . . 11 (𝑓 Fn 𝑋 → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
96, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
102, 5, 9mpbir2and 695 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ (𝑓𝑥))
1110snssd 4530 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ⊆ (𝑓𝑥))
12 eleq2 2874 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝐴𝑦𝐴 ∈ {𝐴}))
13 sseq1 3823 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ⊆ (𝑓𝑥) ↔ {𝐴} ⊆ (𝑓𝑥)))
1412, 13anbi12d 618 . . . . . . . . 9 (𝑦 = {𝐴} → ((𝐴𝑦𝑦 ⊆ (𝑓𝑥)) ↔ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))))
1514rspcev 3502 . . . . . . . 8 (({𝐴} ∈ 𝐽 ∧ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
161, 4, 11, 15syl12anc 856 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
1716expr 446 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ 𝑥𝐾) → ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1817ralrimiva 3154 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1918expr 446 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))))
2019pm4.71d 553 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
21 simpl2 1237 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑌))
22 toponmax 20941 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
2321, 22syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑌𝐾)
24 simpl1 1235 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 toponmax 20941 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2624, 25syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑋𝐽)
2723, 26elmapd 8102 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ (𝑌𝑚 𝑋) ↔ 𝑓:𝑋𝑌))
28 iscnp3 21259 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
2928adantr 468 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
3020, 27, 293bitr4rd 303 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ 𝑓 ∈ (𝑌𝑚 𝑋)))
3130eqrdv 2804 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌𝑚 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2156  wral 3096  wrex 3097  wss 3769  {csn 4370  ccnv 5310  cima 5314   Fn wfn 6092  wf 6093  cfv 6097  (class class class)co 6870  𝑚 cmap 8088  TopOnctopon 20925   CnP ccnp 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ne 2979  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-fv 6105  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-map 8090  df-top 20909  df-topon 20926  df-cnp 21243
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator