MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpdis Structured version   Visualization version   GIF version

Theorem cnpdis 21901
Description: If 𝐴 is an isolated point in 𝑋 (or equivalently, the singleton {𝐴} is open in 𝑋), then every function is continuous at 𝐴. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌m 𝑋))

Proof of Theorem cnpdis
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 775 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ∈ 𝐽)
2 simpll3 1210 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴𝑋)
3 snidg 4599 . . . . . . . . 9 (𝐴𝑋𝐴 ∈ {𝐴})
42, 3syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ {𝐴})
5 simprr 771 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝑓𝐴) ∈ 𝑥)
6 simplrr 776 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝑓:𝑋𝑌)
7 ffn 6514 . . . . . . . . . . 11 (𝑓:𝑋𝑌𝑓 Fn 𝑋)
8 elpreima 6828 . . . . . . . . . . 11 (𝑓 Fn 𝑋 → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
96, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
102, 5, 9mpbir2and 711 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ (𝑓𝑥))
1110snssd 4742 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ⊆ (𝑓𝑥))
12 eleq2 2901 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝐴𝑦𝐴 ∈ {𝐴}))
13 sseq1 3992 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ⊆ (𝑓𝑥) ↔ {𝐴} ⊆ (𝑓𝑥)))
1412, 13anbi12d 632 . . . . . . . . 9 (𝑦 = {𝐴} → ((𝐴𝑦𝑦 ⊆ (𝑓𝑥)) ↔ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))))
1514rspcev 3623 . . . . . . . 8 (({𝐴} ∈ 𝐽 ∧ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
161, 4, 11, 15syl12anc 834 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
1716expr 459 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ 𝑥𝐾) → ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1817ralrimiva 3182 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1918expr 459 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))))
2019pm4.71d 564 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
21 simpl2 1188 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑌))
22 toponmax 21534 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
2321, 22syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑌𝐾)
24 simpl1 1187 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 toponmax 21534 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2624, 25syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑋𝐽)
2723, 26elmapd 8420 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
28 iscnp3 21852 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
2928adantr 483 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
3020, 27, 293bitr4rd 314 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ 𝑓 ∈ (𝑌m 𝑋)))
3130eqrdv 2819 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3138  wrex 3139  wss 3936  {csn 4567  ccnv 5554  cima 5558   Fn wfn 6350  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  TopOnctopon 21518   CnP ccnp 21833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-top 21502  df-topon 21519  df-cnp 21836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator