MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpdis Structured version   Visualization version   GIF version

Theorem cnpdis 22352
Description: If 𝐴 is an isolated point in 𝑋 (or equivalently, the singleton {𝐴} is open in 𝑋), then every function is continuous at 𝐴. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌m 𝑋))

Proof of Theorem cnpdis
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 773 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ∈ 𝐽)
2 simpll3 1212 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴𝑋)
3 snidg 4592 . . . . . . . . 9 (𝐴𝑋𝐴 ∈ {𝐴})
42, 3syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ {𝐴})
5 simprr 769 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝑓𝐴) ∈ 𝑥)
6 simplrr 774 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝑓:𝑋𝑌)
7 ffn 6584 . . . . . . . . . . 11 (𝑓:𝑋𝑌𝑓 Fn 𝑋)
8 elpreima 6917 . . . . . . . . . . 11 (𝑓 Fn 𝑋 → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
96, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
102, 5, 9mpbir2and 709 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ (𝑓𝑥))
1110snssd 4739 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ⊆ (𝑓𝑥))
12 eleq2 2827 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝐴𝑦𝐴 ∈ {𝐴}))
13 sseq1 3942 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ⊆ (𝑓𝑥) ↔ {𝐴} ⊆ (𝑓𝑥)))
1412, 13anbi12d 630 . . . . . . . . 9 (𝑦 = {𝐴} → ((𝐴𝑦𝑦 ⊆ (𝑓𝑥)) ↔ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))))
1514rspcev 3552 . . . . . . . 8 (({𝐴} ∈ 𝐽 ∧ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
161, 4, 11, 15syl12anc 833 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
1716expr 456 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ 𝑥𝐾) → ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1817ralrimiva 3107 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1918expr 456 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))))
2019pm4.71d 561 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
21 simpl2 1190 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑌))
22 toponmax 21983 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
2321, 22syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑌𝐾)
24 simpl1 1189 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 toponmax 21983 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2624, 25syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑋𝐽)
2723, 26elmapd 8587 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
28 iscnp3 22303 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
2928adantr 480 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
3020, 27, 293bitr4rd 311 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ 𝑓 ∈ (𝑌m 𝑋)))
3130eqrdv 2736 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌m 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  {csn 4558  ccnv 5579  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  TopOnctopon 21967   CnP ccnp 22284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-top 21951  df-topon 21968  df-cnp 22287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator