Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpdis Structured version   Visualization version   GIF version

Theorem cnpdis 21908
 Description: If 𝐴 is an isolated point in 𝑋 (or equivalently, the singleton {𝐴} is open in 𝑋), then every function is continuous at 𝐴. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
cnpdis (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌m 𝑋))

Proof of Theorem cnpdis
Dummy variables 𝑥 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplrl 776 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ∈ 𝐽)
2 simpll3 1211 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴𝑋)
3 snidg 4559 . . . . . . . . 9 (𝐴𝑋𝐴 ∈ {𝐴})
42, 3syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ {𝐴})
5 simprr 772 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝑓𝐴) ∈ 𝑥)
6 simplrr 777 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝑓:𝑋𝑌)
7 ffn 6488 . . . . . . . . . . 11 (𝑓:𝑋𝑌𝑓 Fn 𝑋)
8 elpreima 6806 . . . . . . . . . . 11 (𝑓 Fn 𝑋 → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
96, 7, 83syl 18 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → (𝐴 ∈ (𝑓𝑥) ↔ (𝐴𝑋 ∧ (𝑓𝐴) ∈ 𝑥)))
102, 5, 9mpbir2and 712 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → 𝐴 ∈ (𝑓𝑥))
1110snssd 4702 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → {𝐴} ⊆ (𝑓𝑥))
12 eleq2 2878 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝐴𝑦𝐴 ∈ {𝐴}))
13 sseq1 3940 . . . . . . . . . 10 (𝑦 = {𝐴} → (𝑦 ⊆ (𝑓𝑥) ↔ {𝐴} ⊆ (𝑓𝑥)))
1412, 13anbi12d 633 . . . . . . . . 9 (𝑦 = {𝐴} → ((𝐴𝑦𝑦 ⊆ (𝑓𝑥)) ↔ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))))
1514rspcev 3571 . . . . . . . 8 (({𝐴} ∈ 𝐽 ∧ (𝐴 ∈ {𝐴} ∧ {𝐴} ⊆ (𝑓𝑥))) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
161, 4, 11, 15syl12anc 835 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ (𝑥𝐾 ∧ (𝑓𝐴) ∈ 𝑥)) → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))
1716expr 460 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) ∧ 𝑥𝐾) → ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1817ralrimiva 3149 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ ({𝐴} ∈ 𝐽𝑓:𝑋𝑌)) → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))
1918expr 460 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 → ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥)))))
2019pm4.71d 565 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓:𝑋𝑌 ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
21 simpl2 1189 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐾 ∈ (TopOn‘𝑌))
22 toponmax 21541 . . . . 5 (𝐾 ∈ (TopOn‘𝑌) → 𝑌𝐾)
2321, 22syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑌𝐾)
24 simpl1 1188 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 toponmax 21541 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
2624, 25syl 17 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → 𝑋𝐽)
2723, 26elmapd 8406 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ (𝑌m 𝑋) ↔ 𝑓:𝑋𝑌))
28 iscnp3 21859 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
2928adantr 484 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ (𝑓:𝑋𝑌 ∧ ∀𝑥𝐾 ((𝑓𝐴) ∈ 𝑥 → ∃𝑦𝐽 (𝐴𝑦𝑦 ⊆ (𝑓𝑥))))))
3020, 27, 293bitr4rd 315 . 2 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → (𝑓 ∈ ((𝐽 CnP 𝐾)‘𝐴) ↔ 𝑓 ∈ (𝑌m 𝑋)))
3130eqrdv 2796 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌) ∧ 𝐴𝑋) ∧ {𝐴} ∈ 𝐽) → ((𝐽 CnP 𝐾)‘𝐴) = (𝑌m 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   ⊆ wss 3881  {csn 4525  ◡ccnv 5519   “ cima 5523   Fn wfn 6320  ⟶wf 6321  ‘cfv 6325  (class class class)co 7136   ↑m cmap 8392  TopOnctopon 21525   CnP ccnp 21840 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5426  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-fv 6333  df-ov 7139  df-oprab 7140  df-mpo 7141  df-map 8394  df-top 21509  df-topon 21526  df-cnp 21843 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator