MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscopn Structured version   Visualization version   GIF version

Theorem dscopn 24481
Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
dscmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
Assertion
Ref Expression
dscopn (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dscopn
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dscmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
21dscmet 24480 . . . . . 6 (𝑋𝑉𝐷 ∈ (Met‘𝑋))
3 metxmet 24242 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . . . 5 (𝑋𝑉𝐷 ∈ (∞Met‘𝑋))
5 eqid 2730 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
65elmopn 24350 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
74, 6syl 17 . . . 4 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
8 simpll 766 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑋𝑉)
9 ssel2 3927 . . . . . . . . . 10 ((𝑢𝑋𝑣𝑢) → 𝑣𝑋)
109adantll 714 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑣𝑋)
118, 10jca 511 . . . . . . . 8 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → (𝑋𝑉𝑣𝑋))
12 velsn 4590 . . . . . . . . . . . 12 (𝑤 ∈ {𝑣} ↔ 𝑤 = 𝑣)
13 eleq1a 2824 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤 = 𝑣𝑤𝑋))
14 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋)
1514a1i 11 . . . . . . . . . . . . . . 15 (𝑣𝑋 → ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋))
16 eqeq12 2747 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥 = 𝑦𝑣 = 𝑤))
1716ifbid 4497 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑣𝑦 = 𝑤) → if(𝑥 = 𝑦, 0, 1) = if(𝑣 = 𝑤, 0, 1))
18 0re 11106 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
19 1re 11104 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
2018, 19ifcli 4521 . . . . . . . . . . . . . . . . . . . . 21 if(𝑣 = 𝑤, 0, 1) ∈ ℝ
2120elexi 3457 . . . . . . . . . . . . . . . . . . . 20 if(𝑣 = 𝑤, 0, 1) ∈ V
2217, 1, 21ovmpoa 7496 . . . . . . . . . . . . . . . . . . 19 ((𝑣𝑋𝑤𝑋) → (𝑣𝐷𝑤) = if(𝑣 = 𝑤, 0, 1))
2322breq1d 5099 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ if(𝑣 = 𝑤, 0, 1) < 1))
2419ltnri 11214 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 1 < 1
25 iffalse 4482 . . . . . . . . . . . . . . . . . . . . . . 23 𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 1)
2625breq1d 5099 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 = 𝑤 → (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 1 < 1))
2724, 26mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 𝑣 = 𝑤 → ¬ if(𝑣 = 𝑤, 0, 1) < 1)
2827con4i 114 . . . . . . . . . . . . . . . . . . . 20 (if(𝑣 = 𝑤, 0, 1) < 1 → 𝑣 = 𝑤)
29 iftrue 4479 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 0)
30 0lt1 11631 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
3129, 30eqbrtrdi 5128 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) < 1)
3228, 31impbii 209 . . . . . . . . . . . . . . . . . . 19 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑣 = 𝑤)
33 equcom 2019 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤𝑤 = 𝑣)
3432, 33bitri 275 . . . . . . . . . . . . . . . . . 18 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑤 = 𝑣)
3523, 34bitr2di 288 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑣𝐷𝑤) < 1))
36 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → 𝑤𝑋)
3736biantrurd 532 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3835, 37bitrd 279 . . . . . . . . . . . . . . . 16 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3938ex 412 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1))))
4013, 15, 39pm5.21ndd 379 . . . . . . . . . . . . . 14 (𝑣𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4140adantl 481 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
42 1xr 11163 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
43 elbl 24296 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4442, 43mp3an3 1452 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
454, 44sylan 580 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4641, 45bitr4d 282 . . . . . . . . . . . 12 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣𝑤 ∈ (𝑣(ball‘𝐷)1)))
4712, 46bitrid 283 . . . . . . . . . . 11 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ {𝑣} ↔ 𝑤 ∈ (𝑣(ball‘𝐷)1)))
4847eqrdv 2728 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → {𝑣} = (𝑣(ball‘𝐷)1))
49 blelrn 24325 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5042, 49mp3an3 1452 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
514, 50sylan 580 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5248, 51eqeltrd 2829 . . . . . . . . 9 ((𝑋𝑉𝑣𝑋) → {𝑣} ∈ ran (ball‘𝐷))
53 snssi 4758 . . . . . . . . . 10 (𝑣𝑢 → {𝑣} ⊆ 𝑢)
54 vsnid 4614 . . . . . . . . . 10 𝑣 ∈ {𝑣}
5553, 54jctil 519 . . . . . . . . 9 (𝑣𝑢 → (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢))
56 eleq2 2818 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑣𝑤𝑣 ∈ {𝑣}))
57 sseq1 3958 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑤𝑢 ↔ {𝑣} ⊆ 𝑢))
5856, 57anbi12d 632 . . . . . . . . . 10 (𝑤 = {𝑣} → ((𝑣𝑤𝑤𝑢) ↔ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)))
5958rspcev 3575 . . . . . . . . 9 (({𝑣} ∈ ran (ball‘𝐷) ∧ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6052, 55, 59syl2an 596 . . . . . . . 8 (((𝑋𝑉𝑣𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6111, 60sylancom 588 . . . . . . 7 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6261ralrimiva 3122 . . . . . 6 ((𝑋𝑉𝑢𝑋) → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6362ex 412 . . . . 5 (𝑋𝑉 → (𝑢𝑋 → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢)))
6463pm4.71d 561 . . . 4 (𝑋𝑉 → (𝑢𝑋 ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
657, 64bitr4d 282 . . 3 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢𝑋))
66 velpw 4553 . . 3 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
6765, 66bitr4di 289 . 2 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢 ∈ 𝒫 𝑋))
6867eqrdv 2728 1 (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2110  wral 3045  wrex 3054  wss 3900  ifcif 4473  𝒫 cpw 4548  {csn 4574   class class class wbr 5089  ran crn 5615  cfv 6477  (class class class)co 7341  cmpo 7343  cr 10997  0cc0 10998  1c1 10999  *cxr 11137   < clt 11138  ∞Metcxmet 21269  Metcmet 21270  ballcbl 21271  MetOpencmopn 21274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-rp 12883  df-xneg 13003  df-xadd 13004  df-xmul 13005  df-topgen 17339  df-psmet 21276  df-xmet 21277  df-met 21278  df-bl 21279  df-mopn 21280  df-bases 22854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator