MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscopn Structured version   Visualization version   GIF version

Theorem dscopn 24512
Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
dscmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
Assertion
Ref Expression
dscopn (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dscopn
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dscmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
21dscmet 24511 . . . . . 6 (𝑋𝑉𝐷 ∈ (Met‘𝑋))
3 metxmet 24273 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . . . 5 (𝑋𝑉𝐷 ∈ (∞Met‘𝑋))
5 eqid 2735 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
65elmopn 24381 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
74, 6syl 17 . . . 4 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
8 simpll 766 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑋𝑉)
9 ssel2 3953 . . . . . . . . . 10 ((𝑢𝑋𝑣𝑢) → 𝑣𝑋)
109adantll 714 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑣𝑋)
118, 10jca 511 . . . . . . . 8 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → (𝑋𝑉𝑣𝑋))
12 velsn 4617 . . . . . . . . . . . 12 (𝑤 ∈ {𝑣} ↔ 𝑤 = 𝑣)
13 eleq1a 2829 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤 = 𝑣𝑤𝑋))
14 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋)
1514a1i 11 . . . . . . . . . . . . . . 15 (𝑣𝑋 → ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋))
16 eqeq12 2752 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥 = 𝑦𝑣 = 𝑤))
1716ifbid 4524 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑣𝑦 = 𝑤) → if(𝑥 = 𝑦, 0, 1) = if(𝑣 = 𝑤, 0, 1))
18 0re 11237 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
19 1re 11235 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
2018, 19ifcli 4548 . . . . . . . . . . . . . . . . . . . . 21 if(𝑣 = 𝑤, 0, 1) ∈ ℝ
2120elexi 3482 . . . . . . . . . . . . . . . . . . . 20 if(𝑣 = 𝑤, 0, 1) ∈ V
2217, 1, 21ovmpoa 7562 . . . . . . . . . . . . . . . . . . 19 ((𝑣𝑋𝑤𝑋) → (𝑣𝐷𝑤) = if(𝑣 = 𝑤, 0, 1))
2322breq1d 5129 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ if(𝑣 = 𝑤, 0, 1) < 1))
2419ltnri 11344 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 1 < 1
25 iffalse 4509 . . . . . . . . . . . . . . . . . . . . . . 23 𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 1)
2625breq1d 5129 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 = 𝑤 → (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 1 < 1))
2724, 26mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 𝑣 = 𝑤 → ¬ if(𝑣 = 𝑤, 0, 1) < 1)
2827con4i 114 . . . . . . . . . . . . . . . . . . . 20 (if(𝑣 = 𝑤, 0, 1) < 1 → 𝑣 = 𝑤)
29 iftrue 4506 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 0)
30 0lt1 11759 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
3129, 30eqbrtrdi 5158 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) < 1)
3228, 31impbii 209 . . . . . . . . . . . . . . . . . . 19 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑣 = 𝑤)
33 equcom 2017 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤𝑤 = 𝑣)
3432, 33bitri 275 . . . . . . . . . . . . . . . . . 18 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑤 = 𝑣)
3523, 34bitr2di 288 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑣𝐷𝑤) < 1))
36 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → 𝑤𝑋)
3736biantrurd 532 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3835, 37bitrd 279 . . . . . . . . . . . . . . . 16 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3938ex 412 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1))))
4013, 15, 39pm5.21ndd 379 . . . . . . . . . . . . . 14 (𝑣𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4140adantl 481 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
42 1xr 11294 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
43 elbl 24327 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4442, 43mp3an3 1452 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
454, 44sylan 580 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4641, 45bitr4d 282 . . . . . . . . . . . 12 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣𝑤 ∈ (𝑣(ball‘𝐷)1)))
4712, 46bitrid 283 . . . . . . . . . . 11 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ {𝑣} ↔ 𝑤 ∈ (𝑣(ball‘𝐷)1)))
4847eqrdv 2733 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → {𝑣} = (𝑣(ball‘𝐷)1))
49 blelrn 24356 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5042, 49mp3an3 1452 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
514, 50sylan 580 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5248, 51eqeltrd 2834 . . . . . . . . 9 ((𝑋𝑉𝑣𝑋) → {𝑣} ∈ ran (ball‘𝐷))
53 snssi 4784 . . . . . . . . . 10 (𝑣𝑢 → {𝑣} ⊆ 𝑢)
54 vsnid 4639 . . . . . . . . . 10 𝑣 ∈ {𝑣}
5553, 54jctil 519 . . . . . . . . 9 (𝑣𝑢 → (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢))
56 eleq2 2823 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑣𝑤𝑣 ∈ {𝑣}))
57 sseq1 3984 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑤𝑢 ↔ {𝑣} ⊆ 𝑢))
5856, 57anbi12d 632 . . . . . . . . . 10 (𝑤 = {𝑣} → ((𝑣𝑤𝑤𝑢) ↔ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)))
5958rspcev 3601 . . . . . . . . 9 (({𝑣} ∈ ran (ball‘𝐷) ∧ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6052, 55, 59syl2an 596 . . . . . . . 8 (((𝑋𝑉𝑣𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6111, 60sylancom 588 . . . . . . 7 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6261ralrimiva 3132 . . . . . 6 ((𝑋𝑉𝑢𝑋) → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6362ex 412 . . . . 5 (𝑋𝑉 → (𝑢𝑋 → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢)))
6463pm4.71d 561 . . . 4 (𝑋𝑉 → (𝑢𝑋 ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
657, 64bitr4d 282 . . 3 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢𝑋))
66 velpw 4580 . . 3 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
6765, 66bitr4di 289 . 2 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢 ∈ 𝒫 𝑋))
6867eqrdv 2733 1 (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  wss 3926  ifcif 4500  𝒫 cpw 4575  {csn 4601   class class class wbr 5119  ran crn 5655  cfv 6531  (class class class)co 7405  cmpo 7407  cr 11128  0cc0 11129  1c1 11130  *cxr 11268   < clt 11269  ∞Metcxmet 21300  Metcmet 21301  ballcbl 21302  MetOpencmopn 21305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-map 8842  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-z 12589  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-topgen 17457  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-bases 22884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator