MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscopn Structured version   Visualization version   GIF version

Theorem dscopn 23729
Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
dscmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
Assertion
Ref Expression
dscopn (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dscopn
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dscmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
21dscmet 23728 . . . . . 6 (𝑋𝑉𝐷 ∈ (Met‘𝑋))
3 metxmet 23487 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . . . 5 (𝑋𝑉𝐷 ∈ (∞Met‘𝑋))
5 eqid 2738 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
65elmopn 23595 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
74, 6syl 17 . . . 4 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
8 simpll 764 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑋𝑉)
9 ssel2 3916 . . . . . . . . . 10 ((𝑢𝑋𝑣𝑢) → 𝑣𝑋)
109adantll 711 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑣𝑋)
118, 10jca 512 . . . . . . . 8 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → (𝑋𝑉𝑣𝑋))
12 velsn 4577 . . . . . . . . . . . 12 (𝑤 ∈ {𝑣} ↔ 𝑤 = 𝑣)
13 eleq1a 2834 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤 = 𝑣𝑤𝑋))
14 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋)
1514a1i 11 . . . . . . . . . . . . . . 15 (𝑣𝑋 → ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋))
16 eqeq12 2755 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥 = 𝑦𝑣 = 𝑤))
1716ifbid 4482 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑣𝑦 = 𝑤) → if(𝑥 = 𝑦, 0, 1) = if(𝑣 = 𝑤, 0, 1))
18 0re 10977 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
19 1re 10975 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
2018, 19ifcli 4506 . . . . . . . . . . . . . . . . . . . . 21 if(𝑣 = 𝑤, 0, 1) ∈ ℝ
2120elexi 3451 . . . . . . . . . . . . . . . . . . . 20 if(𝑣 = 𝑤, 0, 1) ∈ V
2217, 1, 21ovmpoa 7428 . . . . . . . . . . . . . . . . . . 19 ((𝑣𝑋𝑤𝑋) → (𝑣𝐷𝑤) = if(𝑣 = 𝑤, 0, 1))
2322breq1d 5084 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ if(𝑣 = 𝑤, 0, 1) < 1))
2419ltnri 11084 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 1 < 1
25 iffalse 4468 . . . . . . . . . . . . . . . . . . . . . . 23 𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 1)
2625breq1d 5084 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 = 𝑤 → (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 1 < 1))
2724, 26mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 𝑣 = 𝑤 → ¬ if(𝑣 = 𝑤, 0, 1) < 1)
2827con4i 114 . . . . . . . . . . . . . . . . . . . 20 (if(𝑣 = 𝑤, 0, 1) < 1 → 𝑣 = 𝑤)
29 iftrue 4465 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 0)
30 0lt1 11497 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
3129, 30eqbrtrdi 5113 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) < 1)
3228, 31impbii 208 . . . . . . . . . . . . . . . . . . 19 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑣 = 𝑤)
33 equcom 2021 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤𝑤 = 𝑣)
3432, 33bitri 274 . . . . . . . . . . . . . . . . . 18 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑤 = 𝑣)
3523, 34bitr2di 288 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑣𝐷𝑤) < 1))
36 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → 𝑤𝑋)
3736biantrurd 533 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3835, 37bitrd 278 . . . . . . . . . . . . . . . 16 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3938ex 413 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1))))
4013, 15, 39pm5.21ndd 381 . . . . . . . . . . . . . 14 (𝑣𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4140adantl 482 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
42 1xr 11034 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
43 elbl 23541 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4442, 43mp3an3 1449 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
454, 44sylan 580 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4641, 45bitr4d 281 . . . . . . . . . . . 12 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣𝑤 ∈ (𝑣(ball‘𝐷)1)))
4712, 46bitrid 282 . . . . . . . . . . 11 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ {𝑣} ↔ 𝑤 ∈ (𝑣(ball‘𝐷)1)))
4847eqrdv 2736 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → {𝑣} = (𝑣(ball‘𝐷)1))
49 blelrn 23570 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5042, 49mp3an3 1449 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
514, 50sylan 580 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5248, 51eqeltrd 2839 . . . . . . . . 9 ((𝑋𝑉𝑣𝑋) → {𝑣} ∈ ran (ball‘𝐷))
53 snssi 4741 . . . . . . . . . 10 (𝑣𝑢 → {𝑣} ⊆ 𝑢)
54 vsnid 4598 . . . . . . . . . 10 𝑣 ∈ {𝑣}
5553, 54jctil 520 . . . . . . . . 9 (𝑣𝑢 → (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢))
56 eleq2 2827 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑣𝑤𝑣 ∈ {𝑣}))
57 sseq1 3946 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑤𝑢 ↔ {𝑣} ⊆ 𝑢))
5856, 57anbi12d 631 . . . . . . . . . 10 (𝑤 = {𝑣} → ((𝑣𝑤𝑤𝑢) ↔ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)))
5958rspcev 3561 . . . . . . . . 9 (({𝑣} ∈ ran (ball‘𝐷) ∧ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6052, 55, 59syl2an 596 . . . . . . . 8 (((𝑋𝑉𝑣𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6111, 60sylancom 588 . . . . . . 7 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6261ralrimiva 3103 . . . . . 6 ((𝑋𝑉𝑢𝑋) → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6362ex 413 . . . . 5 (𝑋𝑉 → (𝑢𝑋 → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢)))
6463pm4.71d 562 . . . 4 (𝑋𝑉 → (𝑢𝑋 ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
657, 64bitr4d 281 . . 3 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢𝑋))
66 velpw 4538 . . 3 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
6765, 66bitr4di 289 . 2 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢 ∈ 𝒫 𝑋))
6867eqrdv 2736 1 (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  wss 3887  ifcif 4459  𝒫 cpw 4533  {csn 4561   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  cmpo 7277  cr 10870  0cc0 10871  1c1 10872  *cxr 11008   < clt 11009  ∞Metcxmet 20582  Metcmet 20583  ballcbl 20584  MetOpencmopn 20587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-topgen 17154  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-bases 22096
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator