MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscopn Structured version   Visualization version   GIF version

Theorem dscopn 24607
Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
dscmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
Assertion
Ref Expression
dscopn (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dscopn
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dscmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
21dscmet 24606 . . . . . 6 (𝑋𝑉𝐷 ∈ (Met‘𝑋))
3 metxmet 24365 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . . . 5 (𝑋𝑉𝐷 ∈ (∞Met‘𝑋))
5 eqid 2740 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
65elmopn 24473 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
74, 6syl 17 . . . 4 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
8 simpll 766 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑋𝑉)
9 ssel2 4003 . . . . . . . . . 10 ((𝑢𝑋𝑣𝑢) → 𝑣𝑋)
109adantll 713 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑣𝑋)
118, 10jca 511 . . . . . . . 8 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → (𝑋𝑉𝑣𝑋))
12 velsn 4664 . . . . . . . . . . . 12 (𝑤 ∈ {𝑣} ↔ 𝑤 = 𝑣)
13 eleq1a 2839 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤 = 𝑣𝑤𝑋))
14 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋)
1514a1i 11 . . . . . . . . . . . . . . 15 (𝑣𝑋 → ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋))
16 eqeq12 2757 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥 = 𝑦𝑣 = 𝑤))
1716ifbid 4571 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑣𝑦 = 𝑤) → if(𝑥 = 𝑦, 0, 1) = if(𝑣 = 𝑤, 0, 1))
18 0re 11292 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
19 1re 11290 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
2018, 19ifcli 4595 . . . . . . . . . . . . . . . . . . . . 21 if(𝑣 = 𝑤, 0, 1) ∈ ℝ
2120elexi 3511 . . . . . . . . . . . . . . . . . . . 20 if(𝑣 = 𝑤, 0, 1) ∈ V
2217, 1, 21ovmpoa 7605 . . . . . . . . . . . . . . . . . . 19 ((𝑣𝑋𝑤𝑋) → (𝑣𝐷𝑤) = if(𝑣 = 𝑤, 0, 1))
2322breq1d 5176 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ if(𝑣 = 𝑤, 0, 1) < 1))
2419ltnri 11399 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 1 < 1
25 iffalse 4557 . . . . . . . . . . . . . . . . . . . . . . 23 𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 1)
2625breq1d 5176 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 = 𝑤 → (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 1 < 1))
2724, 26mtbiri 327 . . . . . . . . . . . . . . . . . . . . 21 𝑣 = 𝑤 → ¬ if(𝑣 = 𝑤, 0, 1) < 1)
2827con4i 114 . . . . . . . . . . . . . . . . . . . 20 (if(𝑣 = 𝑤, 0, 1) < 1 → 𝑣 = 𝑤)
29 iftrue 4554 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 0)
30 0lt1 11812 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
3129, 30eqbrtrdi 5205 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) < 1)
3228, 31impbii 209 . . . . . . . . . . . . . . . . . . 19 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑣 = 𝑤)
33 equcom 2017 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤𝑤 = 𝑣)
3432, 33bitri 275 . . . . . . . . . . . . . . . . . 18 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑤 = 𝑣)
3523, 34bitr2di 288 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑣𝐷𝑤) < 1))
36 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → 𝑤𝑋)
3736biantrurd 532 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3835, 37bitrd 279 . . . . . . . . . . . . . . . 16 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3938ex 412 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1))))
4013, 15, 39pm5.21ndd 379 . . . . . . . . . . . . . 14 (𝑣𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4140adantl 481 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
42 1xr 11349 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
43 elbl 24419 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4442, 43mp3an3 1450 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
454, 44sylan 579 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4641, 45bitr4d 282 . . . . . . . . . . . 12 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣𝑤 ∈ (𝑣(ball‘𝐷)1)))
4712, 46bitrid 283 . . . . . . . . . . 11 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ {𝑣} ↔ 𝑤 ∈ (𝑣(ball‘𝐷)1)))
4847eqrdv 2738 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → {𝑣} = (𝑣(ball‘𝐷)1))
49 blelrn 24448 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5042, 49mp3an3 1450 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
514, 50sylan 579 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5248, 51eqeltrd 2844 . . . . . . . . 9 ((𝑋𝑉𝑣𝑋) → {𝑣} ∈ ran (ball‘𝐷))
53 snssi 4833 . . . . . . . . . 10 (𝑣𝑢 → {𝑣} ⊆ 𝑢)
54 vsnid 4685 . . . . . . . . . 10 𝑣 ∈ {𝑣}
5553, 54jctil 519 . . . . . . . . 9 (𝑣𝑢 → (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢))
56 eleq2 2833 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑣𝑤𝑣 ∈ {𝑣}))
57 sseq1 4034 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑤𝑢 ↔ {𝑣} ⊆ 𝑢))
5856, 57anbi12d 631 . . . . . . . . . 10 (𝑤 = {𝑣} → ((𝑣𝑤𝑤𝑢) ↔ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)))
5958rspcev 3635 . . . . . . . . 9 (({𝑣} ∈ ran (ball‘𝐷) ∧ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6052, 55, 59syl2an 595 . . . . . . . 8 (((𝑋𝑉𝑣𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6111, 60sylancom 587 . . . . . . 7 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6261ralrimiva 3152 . . . . . 6 ((𝑋𝑉𝑢𝑋) → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6362ex 412 . . . . 5 (𝑋𝑉 → (𝑢𝑋 → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢)))
6463pm4.71d 561 . . . 4 (𝑋𝑉 → (𝑢𝑋 ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
657, 64bitr4d 282 . . 3 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢𝑋))
66 velpw 4627 . . 3 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
6765, 66bitr4di 289 . 2 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢 ∈ 𝒫 𝑋))
6867eqrdv 2738 1 (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  ifcif 4548  𝒫 cpw 4622  {csn 4648   class class class wbr 5166  ran crn 5701  cfv 6573  (class class class)co 7448  cmpo 7450  cr 11183  0cc0 11184  1c1 11185  *cxr 11323   < clt 11324  ∞Metcxmet 21372  Metcmet 21373  ballcbl 21374  MetOpencmopn 21377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-bases 22974
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator