Step | Hyp | Ref
| Expression |
1 | | dscmet.1 |
. . . . . . 7
β’ π· = (π₯ β π, π¦ β π β¦ if(π₯ = π¦, 0, 1)) |
2 | 1 | dscmet 23951 |
. . . . . 6
β’ (π β π β π· β (Metβπ)) |
3 | | metxmet 23710 |
. . . . . 6
β’ (π· β (Metβπ) β π· β (βMetβπ)) |
4 | 2, 3 | syl 17 |
. . . . 5
β’ (π β π β π· β (βMetβπ)) |
5 | | eqid 2733 |
. . . . . 6
β’
(MetOpenβπ·) =
(MetOpenβπ·) |
6 | 5 | elmopn 23818 |
. . . . 5
β’ (π· β (βMetβπ) β (π’ β (MetOpenβπ·) β (π’ β π β§ βπ£ β π’ βπ€ β ran (ballβπ·)(π£ β π€ β§ π€ β π’)))) |
7 | 4, 6 | syl 17 |
. . . 4
β’ (π β π β (π’ β (MetOpenβπ·) β (π’ β π β§ βπ£ β π’ βπ€ β ran (ballβπ·)(π£ β π€ β§ π€ β π’)))) |
8 | | simpll 766 |
. . . . . . . . 9
β’ (((π β π β§ π’ β π) β§ π£ β π’) β π β π) |
9 | | ssel2 3943 |
. . . . . . . . . 10
β’ ((π’ β π β§ π£ β π’) β π£ β π) |
10 | 9 | adantll 713 |
. . . . . . . . 9
β’ (((π β π β§ π’ β π) β§ π£ β π’) β π£ β π) |
11 | 8, 10 | jca 513 |
. . . . . . . 8
β’ (((π β π β§ π’ β π) β§ π£ β π’) β (π β π β§ π£ β π)) |
12 | | velsn 4606 |
. . . . . . . . . . . 12
β’ (π€ β {π£} β π€ = π£) |
13 | | eleq1a 2829 |
. . . . . . . . . . . . . . 15
β’ (π£ β π β (π€ = π£ β π€ β π)) |
14 | | simpl 484 |
. . . . . . . . . . . . . . . 16
β’ ((π€ β π β§ (π£π·π€) < 1) β π€ β π) |
15 | 14 | a1i 11 |
. . . . . . . . . . . . . . 15
β’ (π£ β π β ((π€ β π β§ (π£π·π€) < 1) β π€ β π)) |
16 | | eqeq12 2750 |
. . . . . . . . . . . . . . . . . . . . 21
β’ ((π₯ = π£ β§ π¦ = π€) β (π₯ = π¦ β π£ = π€)) |
17 | 16 | ifbid 4513 |
. . . . . . . . . . . . . . . . . . . 20
β’ ((π₯ = π£ β§ π¦ = π€) β if(π₯ = π¦, 0, 1) = if(π£ = π€, 0, 1)) |
18 | | 0re 11165 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ 0 β
β |
19 | | 1re 11163 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ 1 β
β |
20 | 18, 19 | ifcli 4537 |
. . . . . . . . . . . . . . . . . . . . 21
β’ if(π£ = π€, 0, 1) β β |
21 | 20 | elexi 3466 |
. . . . . . . . . . . . . . . . . . . 20
β’ if(π£ = π€, 0, 1) β V |
22 | 17, 1, 21 | ovmpoa 7514 |
. . . . . . . . . . . . . . . . . . 19
β’ ((π£ β π β§ π€ β π) β (π£π·π€) = if(π£ = π€, 0, 1)) |
23 | 22 | breq1d 5119 |
. . . . . . . . . . . . . . . . . 18
β’ ((π£ β π β§ π€ β π) β ((π£π·π€) < 1 β if(π£ = π€, 0, 1) < 1)) |
24 | 19 | ltnri 11272 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ Β¬ 1
< 1 |
25 | | iffalse 4499 |
. . . . . . . . . . . . . . . . . . . . . . 23
β’ (Β¬
π£ = π€ β if(π£ = π€, 0, 1) = 1) |
26 | 25 | breq1d 5119 |
. . . . . . . . . . . . . . . . . . . . . 22
β’ (Β¬
π£ = π€ β (if(π£ = π€, 0, 1) < 1 β 1 <
1)) |
27 | 24, 26 | mtbiri 327 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (Β¬
π£ = π€ β Β¬ if(π£ = π€, 0, 1) < 1) |
28 | 27 | con4i 114 |
. . . . . . . . . . . . . . . . . . . 20
β’ (if(π£ = π€, 0, 1) < 1 β π£ = π€) |
29 | | iftrue 4496 |
. . . . . . . . . . . . . . . . . . . . 21
β’ (π£ = π€ β if(π£ = π€, 0, 1) = 0) |
30 | | 0lt1 11685 |
. . . . . . . . . . . . . . . . . . . . 21
β’ 0 <
1 |
31 | 29, 30 | eqbrtrdi 5148 |
. . . . . . . . . . . . . . . . . . . 20
β’ (π£ = π€ β if(π£ = π€, 0, 1) < 1) |
32 | 28, 31 | impbii 208 |
. . . . . . . . . . . . . . . . . . 19
β’ (if(π£ = π€, 0, 1) < 1 β π£ = π€) |
33 | | equcom 2022 |
. . . . . . . . . . . . . . . . . . 19
β’ (π£ = π€ β π€ = π£) |
34 | 32, 33 | bitri 275 |
. . . . . . . . . . . . . . . . . 18
β’ (if(π£ = π€, 0, 1) < 1 β π€ = π£) |
35 | 23, 34 | bitr2di 288 |
. . . . . . . . . . . . . . . . 17
β’ ((π£ β π β§ π€ β π) β (π€ = π£ β (π£π·π€) < 1)) |
36 | | simpr 486 |
. . . . . . . . . . . . . . . . . 18
β’ ((π£ β π β§ π€ β π) β π€ β π) |
37 | 36 | biantrurd 534 |
. . . . . . . . . . . . . . . . 17
β’ ((π£ β π β§ π€ β π) β ((π£π·π€) < 1 β (π€ β π β§ (π£π·π€) < 1))) |
38 | 35, 37 | bitrd 279 |
. . . . . . . . . . . . . . . 16
β’ ((π£ β π β§ π€ β π) β (π€ = π£ β (π€ β π β§ (π£π·π€) < 1))) |
39 | 38 | ex 414 |
. . . . . . . . . . . . . . 15
β’ (π£ β π β (π€ β π β (π€ = π£ β (π€ β π β§ (π£π·π€) < 1)))) |
40 | 13, 15, 39 | pm5.21ndd 381 |
. . . . . . . . . . . . . 14
β’ (π£ β π β (π€ = π£ β (π€ β π β§ (π£π·π€) < 1))) |
41 | 40 | adantl 483 |
. . . . . . . . . . . . 13
β’ ((π β π β§ π£ β π) β (π€ = π£ β (π€ β π β§ (π£π·π€) < 1))) |
42 | | 1xr 11222 |
. . . . . . . . . . . . . . 15
β’ 1 β
β* |
43 | | elbl 23764 |
. . . . . . . . . . . . . . 15
β’ ((π· β (βMetβπ) β§ π£ β π β§ 1 β β*) β
(π€ β (π£(ballβπ·)1) β (π€ β π β§ (π£π·π€) < 1))) |
44 | 42, 43 | mp3an3 1451 |
. . . . . . . . . . . . . 14
β’ ((π· β (βMetβπ) β§ π£ β π) β (π€ β (π£(ballβπ·)1) β (π€ β π β§ (π£π·π€) < 1))) |
45 | 4, 44 | sylan 581 |
. . . . . . . . . . . . 13
β’ ((π β π β§ π£ β π) β (π€ β (π£(ballβπ·)1) β (π€ β π β§ (π£π·π€) < 1))) |
46 | 41, 45 | bitr4d 282 |
. . . . . . . . . . . 12
β’ ((π β π β§ π£ β π) β (π€ = π£ β π€ β (π£(ballβπ·)1))) |
47 | 12, 46 | bitrid 283 |
. . . . . . . . . . 11
β’ ((π β π β§ π£ β π) β (π€ β {π£} β π€ β (π£(ballβπ·)1))) |
48 | 47 | eqrdv 2731 |
. . . . . . . . . 10
β’ ((π β π β§ π£ β π) β {π£} = (π£(ballβπ·)1)) |
49 | | blelrn 23793 |
. . . . . . . . . . . 12
β’ ((π· β (βMetβπ) β§ π£ β π β§ 1 β β*) β
(π£(ballβπ·)1) β ran (ballβπ·)) |
50 | 42, 49 | mp3an3 1451 |
. . . . . . . . . . 11
β’ ((π· β (βMetβπ) β§ π£ β π) β (π£(ballβπ·)1) β ran (ballβπ·)) |
51 | 4, 50 | sylan 581 |
. . . . . . . . . 10
β’ ((π β π β§ π£ β π) β (π£(ballβπ·)1) β ran (ballβπ·)) |
52 | 48, 51 | eqeltrd 2834 |
. . . . . . . . 9
β’ ((π β π β§ π£ β π) β {π£} β ran (ballβπ·)) |
53 | | snssi 4772 |
. . . . . . . . . 10
β’ (π£ β π’ β {π£} β π’) |
54 | | vsnid 4627 |
. . . . . . . . . 10
β’ π£ β {π£} |
55 | 53, 54 | jctil 521 |
. . . . . . . . 9
β’ (π£ β π’ β (π£ β {π£} β§ {π£} β π’)) |
56 | | eleq2 2823 |
. . . . . . . . . . 11
β’ (π€ = {π£} β (π£ β π€ β π£ β {π£})) |
57 | | sseq1 3973 |
. . . . . . . . . . 11
β’ (π€ = {π£} β (π€ β π’ β {π£} β π’)) |
58 | 56, 57 | anbi12d 632 |
. . . . . . . . . 10
β’ (π€ = {π£} β ((π£ β π€ β§ π€ β π’) β (π£ β {π£} β§ {π£} β π’))) |
59 | 58 | rspcev 3583 |
. . . . . . . . 9
β’ (({π£} β ran (ballβπ·) β§ (π£ β {π£} β§ {π£} β π’)) β βπ€ β ran (ballβπ·)(π£ β π€ β§ π€ β π’)) |
60 | 52, 55, 59 | syl2an 597 |
. . . . . . . 8
β’ (((π β π β§ π£ β π) β§ π£ β π’) β βπ€ β ran (ballβπ·)(π£ β π€ β§ π€ β π’)) |
61 | 11, 60 | sylancom 589 |
. . . . . . 7
β’ (((π β π β§ π’ β π) β§ π£ β π’) β βπ€ β ran (ballβπ·)(π£ β π€ β§ π€ β π’)) |
62 | 61 | ralrimiva 3140 |
. . . . . 6
β’ ((π β π β§ π’ β π) β βπ£ β π’ βπ€ β ran (ballβπ·)(π£ β π€ β§ π€ β π’)) |
63 | 62 | ex 414 |
. . . . 5
β’ (π β π β (π’ β π β βπ£ β π’ βπ€ β ran (ballβπ·)(π£ β π€ β§ π€ β π’))) |
64 | 63 | pm4.71d 563 |
. . . 4
β’ (π β π β (π’ β π β (π’ β π β§ βπ£ β π’ βπ€ β ran (ballβπ·)(π£ β π€ β§ π€ β π’)))) |
65 | 7, 64 | bitr4d 282 |
. . 3
β’ (π β π β (π’ β (MetOpenβπ·) β π’ β π)) |
66 | | velpw 4569 |
. . 3
β’ (π’ β π« π β π’ β π) |
67 | 65, 66 | bitr4di 289 |
. 2
β’ (π β π β (π’ β (MetOpenβπ·) β π’ β π« π)) |
68 | 67 | eqrdv 2731 |
1
β’ (π β π β (MetOpenβπ·) = π« π) |