MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dscopn Structured version   Visualization version   GIF version

Theorem dscopn 23635
Description: The discrete metric generates the discrete topology. In particular, the discrete topology is metrizable. (Contributed by Mario Carneiro, 29-Jan-2014.)
Hypothesis
Ref Expression
dscmet.1 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
Assertion
Ref Expression
dscopn (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Distinct variable group:   𝑥,𝑦,𝑋
Allowed substitution hints:   𝐷(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem dscopn
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dscmet.1 . . . . . . 7 𝐷 = (𝑥𝑋, 𝑦𝑋 ↦ if(𝑥 = 𝑦, 0, 1))
21dscmet 23634 . . . . . 6 (𝑋𝑉𝐷 ∈ (Met‘𝑋))
3 metxmet 23395 . . . . . 6 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
42, 3syl 17 . . . . 5 (𝑋𝑉𝐷 ∈ (∞Met‘𝑋))
5 eqid 2738 . . . . . 6 (MetOpen‘𝐷) = (MetOpen‘𝐷)
65elmopn 23503 . . . . 5 (𝐷 ∈ (∞Met‘𝑋) → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
74, 6syl 17 . . . 4 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
8 simpll 763 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑋𝑉)
9 ssel2 3912 . . . . . . . . . 10 ((𝑢𝑋𝑣𝑢) → 𝑣𝑋)
109adantll 710 . . . . . . . . 9 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → 𝑣𝑋)
118, 10jca 511 . . . . . . . 8 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → (𝑋𝑉𝑣𝑋))
12 velsn 4574 . . . . . . . . . . . 12 (𝑤 ∈ {𝑣} ↔ 𝑤 = 𝑣)
13 eleq1a 2834 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤 = 𝑣𝑤𝑋))
14 simpl 482 . . . . . . . . . . . . . . . 16 ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋)
1514a1i 11 . . . . . . . . . . . . . . 15 (𝑣𝑋 → ((𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1) → 𝑤𝑋))
16 eqeq12 2755 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 = 𝑣𝑦 = 𝑤) → (𝑥 = 𝑦𝑣 = 𝑤))
1716ifbid 4479 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 = 𝑣𝑦 = 𝑤) → if(𝑥 = 𝑦, 0, 1) = if(𝑣 = 𝑤, 0, 1))
18 0re 10908 . . . . . . . . . . . . . . . . . . . . . 22 0 ∈ ℝ
19 1re 10906 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℝ
2018, 19ifcli 4503 . . . . . . . . . . . . . . . . . . . . 21 if(𝑣 = 𝑤, 0, 1) ∈ ℝ
2120elexi 3441 . . . . . . . . . . . . . . . . . . . 20 if(𝑣 = 𝑤, 0, 1) ∈ V
2217, 1, 21ovmpoa 7406 . . . . . . . . . . . . . . . . . . 19 ((𝑣𝑋𝑤𝑋) → (𝑣𝐷𝑤) = if(𝑣 = 𝑤, 0, 1))
2322breq1d 5080 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ if(𝑣 = 𝑤, 0, 1) < 1))
2419ltnri 11014 . . . . . . . . . . . . . . . . . . . . . 22 ¬ 1 < 1
25 iffalse 4465 . . . . . . . . . . . . . . . . . . . . . . 23 𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 1)
2625breq1d 5080 . . . . . . . . . . . . . . . . . . . . . 22 𝑣 = 𝑤 → (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 1 < 1))
2724, 26mtbiri 326 . . . . . . . . . . . . . . . . . . . . 21 𝑣 = 𝑤 → ¬ if(𝑣 = 𝑤, 0, 1) < 1)
2827con4i 114 . . . . . . . . . . . . . . . . . . . 20 (if(𝑣 = 𝑤, 0, 1) < 1 → 𝑣 = 𝑤)
29 iftrue 4462 . . . . . . . . . . . . . . . . . . . . 21 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) = 0)
30 0lt1 11427 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
3129, 30eqbrtrdi 5109 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝑤 → if(𝑣 = 𝑤, 0, 1) < 1)
3228, 31impbii 208 . . . . . . . . . . . . . . . . . . 19 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑣 = 𝑤)
33 equcom 2022 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑤𝑤 = 𝑣)
3432, 33bitri 274 . . . . . . . . . . . . . . . . . 18 (if(𝑣 = 𝑤, 0, 1) < 1 ↔ 𝑤 = 𝑣)
3523, 34bitr2di 287 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑣𝐷𝑤) < 1))
36 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑣𝑋𝑤𝑋) → 𝑤𝑋)
3736biantrurd 532 . . . . . . . . . . . . . . . . 17 ((𝑣𝑋𝑤𝑋) → ((𝑣𝐷𝑤) < 1 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3835, 37bitrd 278 . . . . . . . . . . . . . . . 16 ((𝑣𝑋𝑤𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
3938ex 412 . . . . . . . . . . . . . . 15 (𝑣𝑋 → (𝑤𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1))))
4013, 15, 39pm5.21ndd 380 . . . . . . . . . . . . . 14 (𝑣𝑋 → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4140adantl 481 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣 ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
42 1xr 10965 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
43 elbl 23449 . . . . . . . . . . . . . . 15 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4442, 43mp3an3 1448 . . . . . . . . . . . . . 14 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
454, 44sylan 579 . . . . . . . . . . . . 13 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ (𝑣(ball‘𝐷)1) ↔ (𝑤𝑋 ∧ (𝑣𝐷𝑤) < 1)))
4641, 45bitr4d 281 . . . . . . . . . . . 12 ((𝑋𝑉𝑣𝑋) → (𝑤 = 𝑣𝑤 ∈ (𝑣(ball‘𝐷)1)))
4712, 46syl5bb 282 . . . . . . . . . . 11 ((𝑋𝑉𝑣𝑋) → (𝑤 ∈ {𝑣} ↔ 𝑤 ∈ (𝑣(ball‘𝐷)1)))
4847eqrdv 2736 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → {𝑣} = (𝑣(ball‘𝐷)1))
49 blelrn 23478 . . . . . . . . . . . 12 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋 ∧ 1 ∈ ℝ*) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5042, 49mp3an3 1448 . . . . . . . . . . 11 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
514, 50sylan 579 . . . . . . . . . 10 ((𝑋𝑉𝑣𝑋) → (𝑣(ball‘𝐷)1) ∈ ran (ball‘𝐷))
5248, 51eqeltrd 2839 . . . . . . . . 9 ((𝑋𝑉𝑣𝑋) → {𝑣} ∈ ran (ball‘𝐷))
53 snssi 4738 . . . . . . . . . 10 (𝑣𝑢 → {𝑣} ⊆ 𝑢)
54 vsnid 4595 . . . . . . . . . 10 𝑣 ∈ {𝑣}
5553, 54jctil 519 . . . . . . . . 9 (𝑣𝑢 → (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢))
56 eleq2 2827 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑣𝑤𝑣 ∈ {𝑣}))
57 sseq1 3942 . . . . . . . . . . 11 (𝑤 = {𝑣} → (𝑤𝑢 ↔ {𝑣} ⊆ 𝑢))
5856, 57anbi12d 630 . . . . . . . . . 10 (𝑤 = {𝑣} → ((𝑣𝑤𝑤𝑢) ↔ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)))
5958rspcev 3552 . . . . . . . . 9 (({𝑣} ∈ ran (ball‘𝐷) ∧ (𝑣 ∈ {𝑣} ∧ {𝑣} ⊆ 𝑢)) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6052, 55, 59syl2an 595 . . . . . . . 8 (((𝑋𝑉𝑣𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6111, 60sylancom 587 . . . . . . 7 (((𝑋𝑉𝑢𝑋) ∧ 𝑣𝑢) → ∃𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6261ralrimiva 3107 . . . . . 6 ((𝑋𝑉𝑢𝑋) → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))
6362ex 412 . . . . 5 (𝑋𝑉 → (𝑢𝑋 → ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢)))
6463pm4.71d 561 . . . 4 (𝑋𝑉 → (𝑢𝑋 ↔ (𝑢𝑋 ∧ ∀𝑣𝑢𝑤 ∈ ran (ball‘𝐷)(𝑣𝑤𝑤𝑢))))
657, 64bitr4d 281 . . 3 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢𝑋))
66 velpw 4535 . . 3 (𝑢 ∈ 𝒫 𝑋𝑢𝑋)
6765, 66bitr4di 288 . 2 (𝑋𝑉 → (𝑢 ∈ (MetOpen‘𝐷) ↔ 𝑢 ∈ 𝒫 𝑋))
6867eqrdv 2736 1 (𝑋𝑉 → (MetOpen‘𝐷) = 𝒫 𝑋)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  ifcif 4456  𝒫 cpw 4530  {csn 4558   class class class wbr 5070  ran crn 5581  cfv 6418  (class class class)co 7255  cmpo 7257  cr 10801  0cc0 10802  1c1 10803  *cxr 10939   < clt 10940  ∞Metcxmet 20495  Metcmet 20496  ballcbl 20497  MetOpencmopn 20500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-topgen 17071  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-bases 22004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator