Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzsnid Structured version   Visualization version   GIF version

Theorem cntzsnid 31429
Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypotheses
Ref Expression
cntzun.b 𝐵 = (Base‘𝑀)
cntzun.z 𝑍 = (Cntz‘𝑀)
cntzsnid.1 0 = (0g𝑀)
Assertion
Ref Expression
cntzsnid (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵)

Proof of Theorem cntzsnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzun.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzsnid.1 . . . . 5 0 = (0g𝑀)
31, 2mndidcl 18470 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
4 eqid 2737 . . . . 5 (+g𝑀) = (+g𝑀)
5 cntzun.z . . . . 5 𝑍 = (Cntz‘𝑀)
61, 4, 5elcntzsn 19000 . . . 4 ( 0𝐵 → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
73, 6syl 17 . . 3 (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
81, 4, 2mndrid 18476 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀) 0 ) = 𝑥)
91, 4, 2mndlid 18475 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝑀)𝑥) = 𝑥)
108, 9eqtr4d 2780 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))
1110ex 413 . . . 4 (𝑀 ∈ Mnd → (𝑥𝐵 → (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥)))
1211pm4.71d 562 . . 3 (𝑀 ∈ Mnd → (𝑥𝐵 ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
137, 12bitr4d 281 . 2 (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ 𝑥𝐵))
1413eqrdv 2735 1 (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  wcel 2105  {csn 4571  cfv 6465  (class class class)co 7315  Basecbs 16982  +gcplusg 17032  0gc0g 17220  Mndcmnd 18455  Cntzccntz 18990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3350  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-0g 17222  df-mgm 18396  df-sgrp 18445  df-mnd 18456  df-cntz 18992
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator