Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzsnid Structured version   Visualization version   GIF version

Theorem cntzsnid 33016
Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypotheses
Ref Expression
cntzun.b 𝐵 = (Base‘𝑀)
cntzun.z 𝑍 = (Cntz‘𝑀)
cntzsnid.1 0 = (0g𝑀)
Assertion
Ref Expression
cntzsnid (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵)

Proof of Theorem cntzsnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzun.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzsnid.1 . . . . 5 0 = (0g𝑀)
31, 2mndidcl 18683 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
4 eqid 2730 . . . . 5 (+g𝑀) = (+g𝑀)
5 cntzun.z . . . . 5 𝑍 = (Cntz‘𝑀)
61, 4, 5elcntzsn 19264 . . . 4 ( 0𝐵 → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
73, 6syl 17 . . 3 (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
81, 4, 2mndrid 18689 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀) 0 ) = 𝑥)
91, 4, 2mndlid 18688 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝑀)𝑥) = 𝑥)
108, 9eqtr4d 2768 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))
1110ex 412 . . . 4 (𝑀 ∈ Mnd → (𝑥𝐵 → (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥)))
1211pm4.71d 561 . . 3 (𝑀 ∈ Mnd → (𝑥𝐵 ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
137, 12bitr4d 282 . 2 (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ 𝑥𝐵))
1413eqrdv 2728 1 (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {csn 4592  cfv 6514  (class class class)co 7390  Basecbs 17186  +gcplusg 17227  0gc0g 17409  Mndcmnd 18668  Cntzccntz 19254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-cntz 19256
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator