| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cntzsnid | Structured version Visualization version GIF version | ||
| Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| Ref | Expression |
|---|---|
| cntzun.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzun.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| cntzsnid.1 | ⊢ 0 = (0g‘𝑀) |
| Ref | Expression |
|---|---|
| cntzsnid | ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzun.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | cntzsnid.1 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 3 | 1, 2 | mndidcl 18657 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 4 | eqid 2731 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 5 | cntzun.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 6 | 1, 4, 5 | elcntzsn 19237 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 8 | 1, 4, 2 | mndrid 18663 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = 𝑥) |
| 9 | 1, 4, 2 | mndlid 18662 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑀)𝑥) = 𝑥) |
| 10 | 8, 9 | eqtr4d 2769 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)) |
| 11 | 10 | ex 412 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥))) |
| 12 | 11 | pm4.71d 561 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 13 | 7, 12 | bitr4d 282 | . 2 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ 𝑥 ∈ 𝐵)) |
| 14 | 13 | eqrdv 2729 | 1 ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 Cntzccntz 19227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-cntz 19229 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |