Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cntzsnid | Structured version Visualization version GIF version |
Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
cntzun.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzun.z | ⊢ 𝑍 = (Cntz‘𝑀) |
cntzsnid.1 | ⊢ 0 = (0g‘𝑀) |
Ref | Expression |
---|---|
cntzsnid | ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzun.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzsnid.1 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
3 | 1, 2 | mndidcl 18315 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
4 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
5 | cntzun.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
6 | 1, 4, 5 | elcntzsn 18846 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
7 | 3, 6 | syl 17 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
8 | 1, 4, 2 | mndrid 18321 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = 𝑥) |
9 | 1, 4, 2 | mndlid 18320 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑀)𝑥) = 𝑥) |
10 | 8, 9 | eqtr4d 2781 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)) |
11 | 10 | ex 412 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥))) |
12 | 11 | pm4.71d 561 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
13 | 7, 12 | bitr4d 281 | . 2 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ 𝑥 ∈ 𝐵)) |
14 | 13 | eqrdv 2736 | 1 ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 Mndcmnd 18300 Cntzccntz 18836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-cntz 18838 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |