Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cntzsnid | Structured version Visualization version GIF version |
Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
Ref | Expression |
---|---|
cntzun.b | ⊢ 𝐵 = (Base‘𝑀) |
cntzun.z | ⊢ 𝑍 = (Cntz‘𝑀) |
cntzsnid.1 | ⊢ 0 = (0g‘𝑀) |
Ref | Expression |
---|---|
cntzsnid | ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cntzun.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
2 | cntzsnid.1 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
3 | 1, 2 | mndidcl 18470 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
4 | eqid 2737 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
5 | cntzun.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
6 | 1, 4, 5 | elcntzsn 19000 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
7 | 3, 6 | syl 17 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
8 | 1, 4, 2 | mndrid 18476 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = 𝑥) |
9 | 1, 4, 2 | mndlid 18475 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑀)𝑥) = 𝑥) |
10 | 8, 9 | eqtr4d 2780 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)) |
11 | 10 | ex 413 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥))) |
12 | 11 | pm4.71d 562 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
13 | 7, 12 | bitr4d 281 | . 2 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ 𝑥 ∈ 𝐵)) |
14 | 13 | eqrdv 2735 | 1 ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {csn 4571 ‘cfv 6465 (class class class)co 7315 Basecbs 16982 +gcplusg 17032 0gc0g 17220 Mndcmnd 18455 Cntzccntz 18990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-riota 7272 df-ov 7318 df-0g 17222 df-mgm 18396 df-sgrp 18445 df-mnd 18456 df-cntz 18992 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |