Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cntzsnid Structured version   Visualization version   GIF version

Theorem cntzsnid 33055
Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.)
Hypotheses
Ref Expression
cntzun.b 𝐵 = (Base‘𝑀)
cntzun.z 𝑍 = (Cntz‘𝑀)
cntzsnid.1 0 = (0g𝑀)
Assertion
Ref Expression
cntzsnid (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵)

Proof of Theorem cntzsnid
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cntzun.b . . . . 5 𝐵 = (Base‘𝑀)
2 cntzsnid.1 . . . . 5 0 = (0g𝑀)
31, 2mndidcl 18775 . . . 4 (𝑀 ∈ Mnd → 0𝐵)
4 eqid 2735 . . . . 5 (+g𝑀) = (+g𝑀)
5 cntzun.z . . . . 5 𝑍 = (Cntz‘𝑀)
61, 4, 5elcntzsn 19356 . . . 4 ( 0𝐵 → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
73, 6syl 17 . . 3 (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
81, 4, 2mndrid 18781 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀) 0 ) = 𝑥)
91, 4, 2mndlid 18780 . . . . . 6 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝑀)𝑥) = 𝑥)
108, 9eqtr4d 2778 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))
1110ex 412 . . . 4 (𝑀 ∈ Mnd → (𝑥𝐵 → (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥)))
1211pm4.71d 561 . . 3 (𝑀 ∈ Mnd → (𝑥𝐵 ↔ (𝑥𝐵 ∧ (𝑥(+g𝑀) 0 ) = ( 0 (+g𝑀)𝑥))))
137, 12bitr4d 282 . 2 (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ 𝑥𝐵))
1413eqrdv 2733 1 (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760  Cntzccntz 19346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-cntz 19348
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator