| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cntzsnid | Structured version Visualization version GIF version | ||
| Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| Ref | Expression |
|---|---|
| cntzun.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzun.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| cntzsnid.1 | ⊢ 0 = (0g‘𝑀) |
| Ref | Expression |
|---|---|
| cntzsnid | ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzun.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | cntzsnid.1 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 3 | 1, 2 | mndidcl 18623 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 4 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 5 | cntzun.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 6 | 1, 4, 5 | elcntzsn 19204 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 8 | 1, 4, 2 | mndrid 18629 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = 𝑥) |
| 9 | 1, 4, 2 | mndlid 18628 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑀)𝑥) = 𝑥) |
| 10 | 8, 9 | eqtr4d 2767 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)) |
| 11 | 10 | ex 412 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥))) |
| 12 | 11 | pm4.71d 561 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 13 | 7, 12 | bitr4d 282 | . 2 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ 𝑥 ∈ 𝐵)) |
| 14 | 13 | eqrdv 2727 | 1 ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4577 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Mndcmnd 18608 Cntzccntz 19194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-cntz 19196 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |