| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cntzsnid | Structured version Visualization version GIF version | ||
| Description: The centralizer of the identity element is the whole base set. (Contributed by Thierry Arnoux, 27-Nov-2023.) |
| Ref | Expression |
|---|---|
| cntzun.b | ⊢ 𝐵 = (Base‘𝑀) |
| cntzun.z | ⊢ 𝑍 = (Cntz‘𝑀) |
| cntzsnid.1 | ⊢ 0 = (0g‘𝑀) |
| Ref | Expression |
|---|---|
| cntzsnid | ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cntzun.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑀) | |
| 2 | cntzsnid.1 | . . . . 5 ⊢ 0 = (0g‘𝑀) | |
| 3 | 1, 2 | mndidcl 18732 | . . . 4 ⊢ (𝑀 ∈ Mnd → 0 ∈ 𝐵) |
| 4 | eqid 2736 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 5 | cntzun.z | . . . . 5 ⊢ 𝑍 = (Cntz‘𝑀) | |
| 6 | 1, 4, 5 | elcntzsn 19313 | . . . 4 ⊢ ( 0 ∈ 𝐵 → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 7 | 3, 6 | syl 17 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 8 | 1, 4, 2 | mndrid 18738 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = 𝑥) |
| 9 | 1, 4, 2 | mndlid 18737 | . . . . . 6 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑀)𝑥) = 𝑥) |
| 10 | 8, 9 | eqtr4d 2774 | . . . . 5 ⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)) |
| 11 | 10 | ex 412 | . . . 4 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 → (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥))) |
| 12 | 11 | pm4.71d 561 | . . 3 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ 𝐵 ↔ (𝑥 ∈ 𝐵 ∧ (𝑥(+g‘𝑀) 0 ) = ( 0 (+g‘𝑀)𝑥)))) |
| 13 | 7, 12 | bitr4d 282 | . 2 ⊢ (𝑀 ∈ Mnd → (𝑥 ∈ (𝑍‘{ 0 }) ↔ 𝑥 ∈ 𝐵)) |
| 14 | 13 | eqrdv 2734 | 1 ⊢ (𝑀 ∈ Mnd → (𝑍‘{ 0 }) = 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4606 ‘cfv 6536 (class class class)co 7410 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Mndcmnd 18717 Cntzccntz 19303 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-0g 17460 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-cntz 19305 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |