Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > psgnran | Structured version Visualization version GIF version |
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
psgnran.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
psgnran.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
psgnran | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | psgnran.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | 1, 2 | sygbasnfpfi 19120 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
4 | 3 | ex 413 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → dom (𝑄 ∖ I ) ∈ Fin)) |
5 | 4 | pm4.71d 562 | . . . 4 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin))) |
6 | psgnran.s | . . . . 5 ⊢ 𝑆 = (pmSgn‘𝑁) | |
7 | 1, 6, 2 | psgneldm 19111 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)) |
8 | 5, 7 | bitr4di 289 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ 𝑄 ∈ dom 𝑆)) |
9 | eqid 2738 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
10 | 1, 9, 6 | psgnvali 19116 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 → ∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤)))) |
11 | lencl 14236 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℕ0) | |
12 | 11 | nn0zd 12424 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℤ) |
13 | m1expcl2 13804 | . . . . . . . . . 10 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {-1, 1}) | |
14 | prcom 4668 | . . . . . . . . . 10 ⊢ {-1, 1} = {1, -1} | |
15 | 13, 14 | eleqtrdi 2849 | . . . . . . . . 9 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
17 | 16 | adantl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
18 | eleq1a 2834 | . . . . . . 7 ⊢ ((-1↑(♯‘𝑤)) ∈ {1, -1} → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) |
20 | 19 | adantld 491 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
21 | 20 | rexlimdva 3213 | . . . 4 ⊢ (𝑁 ∈ Fin → (∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
22 | 10, 21 | syl5 34 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ dom 𝑆 → (𝑆‘𝑄) ∈ {1, -1})) |
23 | 8, 22 | sylbid 239 | . 2 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → (𝑆‘𝑄) ∈ {1, -1})) |
24 | 23 | imp 407 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∖ cdif 3884 {cpr 4563 I cid 5488 dom cdm 5589 ran crn 5590 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 1c1 10872 -cneg 11206 ℤcz 12319 ↑cexp 13782 ♯chash 14044 Word cword 14217 Basecbs 16912 Σg cgsu 17151 SymGrpcsymg 18974 pmTrspcpmtr 19049 pmSgncpsgn 19097 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-xor 1507 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-tpos 8042 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-word 14218 df-lsw 14266 df-concat 14274 df-s1 14301 df-substr 14354 df-pfx 14384 df-splice 14463 df-reverse 14472 df-s2 14561 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-tset 16981 df-0g 17152 df-gsum 17153 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-efmnd 18508 df-grp 18580 df-minusg 18581 df-subg 18752 df-ghm 18832 df-gim 18875 df-oppg 18950 df-symg 18975 df-pmtr 19050 df-psgn 19099 |
This theorem is referenced by: zrhpsgnelbas 20799 mdetpmtr1 31773 mdetpmtr12 31775 |
Copyright terms: Public domain | W3C validator |