![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnran | Structured version Visualization version GIF version |
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
psgnran.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
psgnran.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
psgnran | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2778 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | psgnran.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | 1, 2 | sygbasnfpfi 18402 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
4 | 3 | ex 405 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → dom (𝑄 ∖ I ) ∈ Fin)) |
5 | 4 | pm4.71d 554 | . . . 4 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin))) |
6 | psgnran.s | . . . . 5 ⊢ 𝑆 = (pmSgn‘𝑁) | |
7 | 1, 6, 2 | psgneldm 18393 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)) |
8 | 5, 7 | syl6bbr 281 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ 𝑄 ∈ dom 𝑆)) |
9 | eqid 2778 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
10 | 1, 9, 6 | psgnvali 18398 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 → ∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤)))) |
11 | lencl 13694 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℕ0) | |
12 | 11 | nn0zd 11898 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℤ) |
13 | m1expcl2 13266 | . . . . . . . . . 10 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {-1, 1}) | |
14 | prcom 4542 | . . . . . . . . . 10 ⊢ {-1, 1} = {1, -1} | |
15 | 13, 14 | syl6eleq 2876 | . . . . . . . . 9 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
17 | 16 | adantl 474 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
18 | eleq1a 2861 | . . . . . . 7 ⊢ ((-1↑(♯‘𝑤)) ∈ {1, -1} → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) |
20 | 19 | adantld 483 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
21 | 20 | rexlimdva 3229 | . . . 4 ⊢ (𝑁 ∈ Fin → (∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
22 | 10, 21 | syl5 34 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ dom 𝑆 → (𝑆‘𝑄) ∈ {1, -1})) |
23 | 8, 22 | sylbid 232 | . 2 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → (𝑆‘𝑄) ∈ {1, -1})) |
24 | 23 | imp 398 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ∃wrex 3089 ∖ cdif 3826 {cpr 4443 I cid 5311 dom cdm 5407 ran crn 5408 ‘cfv 6188 (class class class)co 6976 Fincfn 8306 1c1 10336 -cneg 10671 ℤcz 11793 ↑cexp 13244 ♯chash 13505 Word cword 13672 Basecbs 16339 Σg cgsu 16570 SymGrpcsymg 18266 pmTrspcpmtr 18330 pmSgncpsgn 18378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 ax-cnex 10391 ax-resscn 10392 ax-1cn 10393 ax-icn 10394 ax-addcl 10395 ax-addrcl 10396 ax-mulcl 10397 ax-mulrcl 10398 ax-mulcom 10399 ax-addass 10400 ax-mulass 10401 ax-distr 10402 ax-i2m1 10403 ax-1ne0 10404 ax-1rid 10405 ax-rnegex 10406 ax-rrecex 10407 ax-cnre 10408 ax-pre-lttri 10409 ax-pre-lttrn 10410 ax-pre-ltadd 10411 ax-pre-mulgt0 10412 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-xor 1489 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-nel 3074 df-ral 3093 df-rex 3094 df-reu 3095 df-rmo 3096 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-pss 3845 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-ot 4450 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-se 5367 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-isom 6197 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-om 7397 df-1st 7501 df-2nd 7502 df-tpos 7695 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-1o 7905 df-2o 7906 df-oadd 7909 df-er 8089 df-map 8208 df-en 8307 df-dom 8308 df-sdom 8309 df-fin 8310 df-card 9162 df-pnf 10476 df-mnf 10477 df-xr 10478 df-ltxr 10479 df-le 10480 df-sub 10672 df-neg 10673 df-div 11099 df-nn 11440 df-2 11503 df-3 11504 df-4 11505 df-5 11506 df-6 11507 df-7 11508 df-8 11509 df-9 11510 df-n0 11708 df-xnn0 11780 df-z 11794 df-uz 12059 df-rp 12205 df-fz 12709 df-fzo 12850 df-seq 13185 df-exp 13245 df-hash 13506 df-word 13673 df-lsw 13726 df-concat 13734 df-s1 13759 df-substr 13804 df-pfx 13853 df-splice 13960 df-reverse 13978 df-s2 14072 df-struct 16341 df-ndx 16342 df-slot 16343 df-base 16345 df-sets 16346 df-ress 16347 df-plusg 16434 df-tset 16440 df-0g 16571 df-gsum 16572 df-mre 16715 df-mrc 16716 df-acs 16718 df-mgm 17710 df-sgrp 17752 df-mnd 17763 df-mhm 17803 df-submnd 17804 df-grp 17894 df-minusg 17895 df-subg 18060 df-ghm 18127 df-gim 18170 df-oppg 18245 df-symg 18267 df-pmtr 18331 df-psgn 18380 |
This theorem is referenced by: zrhpsgnelbas 20440 mdetpmtr1 30736 mdetpmtr12 30738 |
Copyright terms: Public domain | W3C validator |