![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnran | Structured version Visualization version GIF version |
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
psgnran.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
psgnran.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
psgnran | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | psgnran.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | 1, 2 | sygbasnfpfi 19374 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
4 | 3 | ex 413 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → dom (𝑄 ∖ I ) ∈ Fin)) |
5 | 4 | pm4.71d 562 | . . . 4 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin))) |
6 | psgnran.s | . . . . 5 ⊢ 𝑆 = (pmSgn‘𝑁) | |
7 | 1, 6, 2 | psgneldm 19365 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)) |
8 | 5, 7 | bitr4di 288 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ 𝑄 ∈ dom 𝑆)) |
9 | eqid 2732 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
10 | 1, 9, 6 | psgnvali 19370 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 → ∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤)))) |
11 | lencl 14479 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℕ0) | |
12 | 11 | nn0zd 12580 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℤ) |
13 | m1expcl2 14047 | . . . . . . . . . 10 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {-1, 1}) | |
14 | prcom 4735 | . . . . . . . . . 10 ⊢ {-1, 1} = {1, -1} | |
15 | 13, 14 | eleqtrdi 2843 | . . . . . . . . 9 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
17 | 16 | adantl 482 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
18 | eleq1a 2828 | . . . . . . 7 ⊢ ((-1↑(♯‘𝑤)) ∈ {1, -1} → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) |
20 | 19 | adantld 491 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
21 | 20 | rexlimdva 3155 | . . . 4 ⊢ (𝑁 ∈ Fin → (∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
22 | 10, 21 | syl5 34 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ dom 𝑆 → (𝑆‘𝑄) ∈ {1, -1})) |
23 | 8, 22 | sylbid 239 | . 2 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → (𝑆‘𝑄) ∈ {1, -1})) |
24 | 23 | imp 407 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃wrex 3070 ∖ cdif 3944 {cpr 4629 I cid 5572 dom cdm 5675 ran crn 5676 ‘cfv 6540 (class class class)co 7405 Fincfn 8935 1c1 11107 -cneg 11441 ℤcz 12554 ↑cexp 14023 ♯chash 14286 Word cword 14460 Basecbs 17140 Σg cgsu 17382 SymGrpcsymg 19228 pmTrspcpmtr 19303 pmSgncpsgn 19351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-xor 1510 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-seq 13963 df-exp 14024 df-hash 14287 df-word 14461 df-lsw 14509 df-concat 14517 df-s1 14542 df-substr 14587 df-pfx 14617 df-splice 14696 df-reverse 14705 df-s2 14795 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-tset 17212 df-0g 17383 df-gsum 17384 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-efmnd 18746 df-grp 18818 df-minusg 18819 df-subg 18997 df-ghm 19084 df-gim 19127 df-oppg 19204 df-symg 19229 df-pmtr 19304 df-psgn 19353 |
This theorem is referenced by: zrhpsgnelbas 21138 mdetpmtr1 32791 mdetpmtr12 32793 |
Copyright terms: Public domain | W3C validator |