![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psgnran | Structured version Visualization version GIF version |
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
psgnran.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
psgnran.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
Ref | Expression |
---|---|
psgnran | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
2 | psgnran.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
3 | 1, 2 | sygbasnfpfi 19428 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
4 | 3 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → dom (𝑄 ∖ I ) ∈ Fin)) |
5 | 4 | pm4.71d 561 | . . . 4 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin))) |
6 | psgnran.s | . . . . 5 ⊢ 𝑆 = (pmSgn‘𝑁) | |
7 | 1, 6, 2 | psgneldm 19419 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)) |
8 | 5, 7 | bitr4di 289 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ 𝑄 ∈ dom 𝑆)) |
9 | eqid 2731 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
10 | 1, 9, 6 | psgnvali 19424 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 → ∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤)))) |
11 | lencl 14490 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℕ0) | |
12 | 11 | nn0zd 12591 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℤ) |
13 | m1expcl2 14058 | . . . . . . . . . 10 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {-1, 1}) | |
14 | prcom 4736 | . . . . . . . . . 10 ⊢ {-1, 1} = {1, -1} | |
15 | 13, 14 | eleqtrdi 2842 | . . . . . . . . 9 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
17 | 16 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
18 | eleq1a 2827 | . . . . . . 7 ⊢ ((-1↑(♯‘𝑤)) ∈ {1, -1} → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) | |
19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) |
20 | 19 | adantld 490 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
21 | 20 | rexlimdva 3154 | . . . 4 ⊢ (𝑁 ∈ Fin → (∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
22 | 10, 21 | syl5 34 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ dom 𝑆 → (𝑆‘𝑄) ∈ {1, -1})) |
23 | 8, 22 | sylbid 239 | . 2 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → (𝑆‘𝑄) ∈ {1, -1})) |
24 | 23 | imp 406 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∖ cdif 3945 {cpr 4630 I cid 5573 dom cdm 5676 ran crn 5677 ‘cfv 6543 (class class class)co 7412 Fincfn 8945 1c1 11117 -cneg 11452 ℤcz 12565 ↑cexp 14034 ♯chash 14297 Word cword 14471 Basecbs 17151 Σg cgsu 17393 SymGrpcsymg 19282 pmTrspcpmtr 19357 pmSgncpsgn 19405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-xor 1509 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-tpos 8217 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-xnn0 12552 df-z 12566 df-uz 12830 df-rp 12982 df-fz 13492 df-fzo 13635 df-seq 13974 df-exp 14035 df-hash 14298 df-word 14472 df-lsw 14520 df-concat 14528 df-s1 14553 df-substr 14598 df-pfx 14628 df-splice 14707 df-reverse 14716 df-s2 14806 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-tset 17223 df-0g 17394 df-gsum 17395 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-efmnd 18792 df-grp 18864 df-minusg 18865 df-subg 19046 df-ghm 19135 df-gim 19180 df-oppg 19258 df-symg 19283 df-pmtr 19358 df-psgn 19407 |
This theorem is referenced by: zrhpsgnelbas 21457 mdetpmtr1 33267 mdetpmtr12 33269 |
Copyright terms: Public domain | W3C validator |