MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnran Structured version   Visualization version   GIF version

Theorem psgnran 18861
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
psgnran.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnran.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
psgnran ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})

Proof of Theorem psgnran
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . . . 7 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 psgnran.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
31, 2sygbasnfpfi 18858 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → dom (𝑄 ∖ I ) ∈ Fin)
43ex 416 . . . . 5 (𝑁 ∈ Fin → (𝑄𝑃 → dom (𝑄 ∖ I ) ∈ Fin))
54pm4.71d 565 . . . 4 (𝑁 ∈ Fin → (𝑄𝑃 ↔ (𝑄𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)))
6 psgnran.s . . . . 5 𝑆 = (pmSgn‘𝑁)
71, 6, 2psgneldm 18849 . . . 4 (𝑄 ∈ dom 𝑆 ↔ (𝑄𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin))
85, 7bitr4di 292 . . 3 (𝑁 ∈ Fin → (𝑄𝑃𝑄 ∈ dom 𝑆))
9 eqid 2736 . . . . 5 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
101, 9, 6psgnvali 18854 . . . 4 (𝑄 ∈ dom 𝑆 → ∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))))
11 lencl 14053 . . . . . . . . . 10 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℕ0)
1211nn0zd 12245 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℤ)
13 m1expcl2 13622 . . . . . . . . . 10 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {-1, 1})
14 prcom 4634 . . . . . . . . . 10 {-1, 1} = {1, -1}
1513, 14eleqtrdi 2841 . . . . . . . . 9 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {1, -1})
1612, 15syl 17 . . . . . . . 8 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (-1↑(♯‘𝑤)) ∈ {1, -1})
1716adantl 485 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → (-1↑(♯‘𝑤)) ∈ {1, -1})
18 eleq1a 2826 . . . . . . 7 ((-1↑(♯‘𝑤)) ∈ {1, -1} → ((𝑆𝑄) = (-1↑(♯‘𝑤)) → (𝑆𝑄) ∈ {1, -1}))
1917, 18syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑆𝑄) = (-1↑(♯‘𝑤)) → (𝑆𝑄) ∈ {1, -1}))
2019adantld 494 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))) → (𝑆𝑄) ∈ {1, -1}))
2120rexlimdva 3193 . . . 4 (𝑁 ∈ Fin → (∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))) → (𝑆𝑄) ∈ {1, -1}))
2210, 21syl5 34 . . 3 (𝑁 ∈ Fin → (𝑄 ∈ dom 𝑆 → (𝑆𝑄) ∈ {1, -1}))
238, 22sylbid 243 . 2 (𝑁 ∈ Fin → (𝑄𝑃 → (𝑆𝑄) ∈ {1, -1}))
2423imp 410 1 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wrex 3052  cdif 3850  {cpr 4529   I cid 5439  dom cdm 5536  ran crn 5537  cfv 6358  (class class class)co 7191  Fincfn 8604  1c1 10695  -cneg 11028  cz 12141  cexp 13600  chash 13861  Word cword 14034  Basecbs 16666   Σg cgsu 16899  SymGrpcsymg 18713  pmTrspcpmtr 18787  pmSgncpsgn 18835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-xor 1508  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-ot 4536  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-tpos 7946  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-word 14035  df-lsw 14083  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-splice 14280  df-reverse 14289  df-s2 14378  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-tset 16768  df-0g 16900  df-gsum 16901  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-submnd 18173  df-efmnd 18250  df-grp 18322  df-minusg 18323  df-subg 18494  df-ghm 18574  df-gim 18617  df-oppg 18692  df-symg 18714  df-pmtr 18788  df-psgn 18837
This theorem is referenced by:  zrhpsgnelbas  20510  mdetpmtr1  31441  mdetpmtr12  31443
  Copyright terms: Public domain W3C validator