MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnran Structured version   Visualization version   GIF version

Theorem psgnran 19445
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
psgnran.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnran.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
psgnran ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})

Proof of Theorem psgnran
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . 7 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 psgnran.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
31, 2sygbasnfpfi 19442 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → dom (𝑄 ∖ I ) ∈ Fin)
43ex 412 . . . . 5 (𝑁 ∈ Fin → (𝑄𝑃 → dom (𝑄 ∖ I ) ∈ Fin))
54pm4.71d 561 . . . 4 (𝑁 ∈ Fin → (𝑄𝑃 ↔ (𝑄𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)))
6 psgnran.s . . . . 5 𝑆 = (pmSgn‘𝑁)
71, 6, 2psgneldm 19433 . . . 4 (𝑄 ∈ dom 𝑆 ↔ (𝑄𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin))
85, 7bitr4di 289 . . 3 (𝑁 ∈ Fin → (𝑄𝑃𝑄 ∈ dom 𝑆))
9 eqid 2729 . . . . 5 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
101, 9, 6psgnvali 19438 . . . 4 (𝑄 ∈ dom 𝑆 → ∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))))
11 lencl 14498 . . . . . . . . . 10 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℕ0)
1211nn0zd 12555 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℤ)
13 m1expcl2 14050 . . . . . . . . . 10 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {-1, 1})
14 prcom 4696 . . . . . . . . . 10 {-1, 1} = {1, -1}
1513, 14eleqtrdi 2838 . . . . . . . . 9 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {1, -1})
1612, 15syl 17 . . . . . . . 8 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (-1↑(♯‘𝑤)) ∈ {1, -1})
1716adantl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → (-1↑(♯‘𝑤)) ∈ {1, -1})
18 eleq1a 2823 . . . . . . 7 ((-1↑(♯‘𝑤)) ∈ {1, -1} → ((𝑆𝑄) = (-1↑(♯‘𝑤)) → (𝑆𝑄) ∈ {1, -1}))
1917, 18syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑆𝑄) = (-1↑(♯‘𝑤)) → (𝑆𝑄) ∈ {1, -1}))
2019adantld 490 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))) → (𝑆𝑄) ∈ {1, -1}))
2120rexlimdva 3134 . . . 4 (𝑁 ∈ Fin → (∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))) → (𝑆𝑄) ∈ {1, -1}))
2210, 21syl5 34 . . 3 (𝑁 ∈ Fin → (𝑄 ∈ dom 𝑆 → (𝑆𝑄) ∈ {1, -1}))
238, 22sylbid 240 . 2 (𝑁 ∈ Fin → (𝑄𝑃 → (𝑆𝑄) ∈ {1, -1}))
2423imp 406 1 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3911  {cpr 4591   I cid 5532  dom cdm 5638  ran crn 5639  cfv 6511  (class class class)co 7387  Fincfn 8918  1c1 11069  -cneg 11406  cz 12529  cexp 14026  chash 14295  Word cword 14478  Basecbs 17179   Σg cgsu 17403  SymGrpcsymg 19299  pmTrspcpmtr 19371  pmSgncpsgn 19419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-tset 17239  df-0g 17404  df-gsum 17405  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-subg 19055  df-ghm 19145  df-gim 19191  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421
This theorem is referenced by:  zrhpsgnelbas  21503  mdetpmtr1  33813  mdetpmtr12  33815
  Copyright terms: Public domain W3C validator