| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psgnran | Structured version Visualization version GIF version | ||
| Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| psgnran.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| psgnran.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| Ref | Expression |
|---|---|
| psgnran | ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . 7 ⊢ (SymGrp‘𝑁) = (SymGrp‘𝑁) | |
| 2 | psgnran.p | . . . . . . 7 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 3 | 1, 2 | sygbasnfpfi 19425 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → dom (𝑄 ∖ I ) ∈ Fin) |
| 4 | 3 | ex 412 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → dom (𝑄 ∖ I ) ∈ Fin)) |
| 5 | 4 | pm4.71d 561 | . . . 4 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin))) |
| 6 | psgnran.s | . . . . 5 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 7 | 1, 6, 2 | psgneldm 19416 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 ↔ (𝑄 ∈ 𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)) |
| 8 | 5, 7 | bitr4di 289 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 ↔ 𝑄 ∈ dom 𝑆)) |
| 9 | eqid 2731 | . . . . 5 ⊢ ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁) | |
| 10 | 1, 9, 6 | psgnvali 19421 | . . . 4 ⊢ (𝑄 ∈ dom 𝑆 → ∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤)))) |
| 11 | lencl 14440 | . . . . . . . . . 10 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℕ0) | |
| 12 | 11 | nn0zd 12494 | . . . . . . . . 9 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℤ) |
| 13 | m1expcl2 13992 | . . . . . . . . . 10 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {-1, 1}) | |
| 14 | prcom 4685 | . . . . . . . . . 10 ⊢ {-1, 1} = {1, -1} | |
| 15 | 13, 14 | eleqtrdi 2841 | . . . . . . . . 9 ⊢ ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
| 16 | 12, 15 | syl 17 | . . . . . . . 8 ⊢ (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
| 17 | 16 | adantl 481 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → (-1↑(♯‘𝑤)) ∈ {1, -1}) |
| 18 | eleq1a 2826 | . . . . . . 7 ⊢ ((-1↑(♯‘𝑤)) ∈ {1, -1} → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) | |
| 19 | 17, 18 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑆‘𝑄) = (-1↑(♯‘𝑤)) → (𝑆‘𝑄) ∈ {1, -1})) |
| 20 | 19 | adantld 490 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
| 21 | 20 | rexlimdva 3133 | . . . 4 ⊢ (𝑁 ∈ Fin → (∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆‘𝑄) = (-1↑(♯‘𝑤))) → (𝑆‘𝑄) ∈ {1, -1})) |
| 22 | 10, 21 | syl5 34 | . . 3 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ dom 𝑆 → (𝑆‘𝑄) ∈ {1, -1})) |
| 23 | 8, 22 | sylbid 240 | . 2 ⊢ (𝑁 ∈ Fin → (𝑄 ∈ 𝑃 → (𝑆‘𝑄) ∈ {1, -1})) |
| 24 | 23 | imp 406 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → (𝑆‘𝑄) ∈ {1, -1}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 ∖ cdif 3899 {cpr 4578 I cid 5510 dom cdm 5616 ran crn 5617 ‘cfv 6481 (class class class)co 7346 Fincfn 8869 1c1 11007 -cneg 11345 ℤcz 12468 ↑cexp 13968 ♯chash 14237 Word cword 14420 Basecbs 17120 Σg cgsu 17344 SymGrpcsymg 19282 pmTrspcpmtr 19354 pmSgncpsgn 19402 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1513 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-ot 4585 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-word 14421 df-lsw 14470 df-concat 14478 df-s1 14504 df-substr 14549 df-pfx 14579 df-splice 14657 df-reverse 14666 df-s2 14755 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-tset 17180 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-efmnd 18777 df-grp 18849 df-minusg 18850 df-subg 19036 df-ghm 19126 df-gim 19172 df-oppg 19259 df-symg 19283 df-pmtr 19355 df-psgn 19404 |
| This theorem is referenced by: zrhpsgnelbas 21532 mdetpmtr1 33834 mdetpmtr12 33836 |
| Copyright terms: Public domain | W3C validator |