MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  psgnran Structured version   Visualization version   GIF version

Theorem psgnran 19431
Description: The range of the permutation sign function for finite permutations. (Contributed by AV, 1-Jan-2019.)
Hypotheses
Ref Expression
psgnran.p 𝑃 = (Base‘(SymGrp‘𝑁))
psgnran.s 𝑆 = (pmSgn‘𝑁)
Assertion
Ref Expression
psgnran ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})

Proof of Theorem psgnran
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . 7 (SymGrp‘𝑁) = (SymGrp‘𝑁)
2 psgnran.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
31, 2sygbasnfpfi 19428 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → dom (𝑄 ∖ I ) ∈ Fin)
43ex 412 . . . . 5 (𝑁 ∈ Fin → (𝑄𝑃 → dom (𝑄 ∖ I ) ∈ Fin))
54pm4.71d 561 . . . 4 (𝑁 ∈ Fin → (𝑄𝑃 ↔ (𝑄𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin)))
6 psgnran.s . . . . 5 𝑆 = (pmSgn‘𝑁)
71, 6, 2psgneldm 19419 . . . 4 (𝑄 ∈ dom 𝑆 ↔ (𝑄𝑃 ∧ dom (𝑄 ∖ I ) ∈ Fin))
85, 7bitr4di 289 . . 3 (𝑁 ∈ Fin → (𝑄𝑃𝑄 ∈ dom 𝑆))
9 eqid 2731 . . . . 5 ran (pmTrsp‘𝑁) = ran (pmTrsp‘𝑁)
101, 9, 6psgnvali 19424 . . . 4 (𝑄 ∈ dom 𝑆 → ∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))))
11 lencl 14490 . . . . . . . . . 10 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℕ0)
1211nn0zd 12591 . . . . . . . . 9 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (♯‘𝑤) ∈ ℤ)
13 m1expcl2 14058 . . . . . . . . . 10 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {-1, 1})
14 prcom 4736 . . . . . . . . . 10 {-1, 1} = {1, -1}
1513, 14eleqtrdi 2842 . . . . . . . . 9 ((♯‘𝑤) ∈ ℤ → (-1↑(♯‘𝑤)) ∈ {1, -1})
1612, 15syl 17 . . . . . . . 8 (𝑤 ∈ Word ran (pmTrsp‘𝑁) → (-1↑(♯‘𝑤)) ∈ {1, -1})
1716adantl 481 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → (-1↑(♯‘𝑤)) ∈ {1, -1})
18 eleq1a 2827 . . . . . . 7 ((-1↑(♯‘𝑤)) ∈ {1, -1} → ((𝑆𝑄) = (-1↑(♯‘𝑤)) → (𝑆𝑄) ∈ {1, -1}))
1917, 18syl 17 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑆𝑄) = (-1↑(♯‘𝑤)) → (𝑆𝑄) ∈ {1, -1}))
2019adantld 490 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑤 ∈ Word ran (pmTrsp‘𝑁)) → ((𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))) → (𝑆𝑄) ∈ {1, -1}))
2120rexlimdva 3154 . . . 4 (𝑁 ∈ Fin → (∃𝑤 ∈ Word ran (pmTrsp‘𝑁)(𝑄 = ((SymGrp‘𝑁) Σg 𝑤) ∧ (𝑆𝑄) = (-1↑(♯‘𝑤))) → (𝑆𝑄) ∈ {1, -1}))
2210, 21syl5 34 . . 3 (𝑁 ∈ Fin → (𝑄 ∈ dom 𝑆 → (𝑆𝑄) ∈ {1, -1}))
238, 22sylbid 239 . 2 (𝑁 ∈ Fin → (𝑄𝑃 → (𝑆𝑄) ∈ {1, -1}))
2423imp 406 1 ((𝑁 ∈ Fin ∧ 𝑄𝑃) → (𝑆𝑄) ∈ {1, -1})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  wrex 3069  cdif 3945  {cpr 4630   I cid 5573  dom cdm 5676  ran crn 5677  cfv 6543  (class class class)co 7412  Fincfn 8945  1c1 11117  -cneg 11452  cz 12565  cexp 14034  chash 14297  Word cword 14471  Basecbs 17151   Σg cgsu 17393  SymGrpcsymg 19282  pmTrspcpmtr 19357  pmSgncpsgn 19405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-xor 1509  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-tpos 8217  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-uz 12830  df-rp 12982  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-word 14472  df-lsw 14520  df-concat 14528  df-s1 14553  df-substr 14598  df-pfx 14628  df-splice 14707  df-reverse 14716  df-s2 14806  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-tset 17223  df-0g 17394  df-gsum 17395  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-mhm 18711  df-submnd 18712  df-efmnd 18792  df-grp 18864  df-minusg 18865  df-subg 19046  df-ghm 19135  df-gim 19180  df-oppg 19258  df-symg 19283  df-pmtr 19358  df-psgn 19407
This theorem is referenced by:  zrhpsgnelbas  21457  mdetpmtr1  33267  mdetpmtr12  33269
  Copyright terms: Public domain W3C validator