MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cndis Structured version   Visualization version   GIF version

Theorem cndis 23016
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cndis ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑m 𝐴))

Proof of Theorem cndis
Dummy variables π‘₯ 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6080 . . . . . . . 8 (◑𝑓 β€œ π‘₯) βŠ† dom 𝑓
2 fdm 6726 . . . . . . . . 9 (𝑓:π΄βŸΆπ‘‹ β†’ dom 𝑓 = 𝐴)
32adantl 481 . . . . . . . 8 (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑓:π΄βŸΆπ‘‹) β†’ dom 𝑓 = 𝐴)
41, 3sseqtrid 4034 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑓:π΄βŸΆπ‘‹) β†’ (◑𝑓 β€œ π‘₯) βŠ† 𝐴)
5 elpw2g 5344 . . . . . . . 8 (𝐴 ∈ 𝑉 β†’ ((◑𝑓 β€œ π‘₯) ∈ 𝒫 𝐴 ↔ (◑𝑓 β€œ π‘₯) βŠ† 𝐴))
65ad2antrr 723 . . . . . . 7 (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑓:π΄βŸΆπ‘‹) β†’ ((◑𝑓 β€œ π‘₯) ∈ 𝒫 𝐴 ↔ (◑𝑓 β€œ π‘₯) βŠ† 𝐴))
74, 6mpbird 257 . . . . . 6 (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑓:π΄βŸΆπ‘‹) β†’ (◑𝑓 β€œ π‘₯) ∈ 𝒫 𝐴)
87ralrimivw 3149 . . . . 5 (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) ∧ 𝑓:π΄βŸΆπ‘‹) β†’ βˆ€π‘₯ ∈ 𝐽 (◑𝑓 β€œ π‘₯) ∈ 𝒫 𝐴)
98ex 412 . . . 4 ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑓:π΄βŸΆπ‘‹ β†’ βˆ€π‘₯ ∈ 𝐽 (◑𝑓 β€œ π‘₯) ∈ 𝒫 𝐴))
109pm4.71d 561 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑓:π΄βŸΆπ‘‹ ↔ (𝑓:π΄βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝐽 (◑𝑓 β€œ π‘₯) ∈ 𝒫 𝐴)))
11 toponmax 22649 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝑋 ∈ 𝐽)
12 id 22 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ 𝑉)
13 elmapg 8836 . . . 4 ((𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑉) β†’ (𝑓 ∈ (𝑋 ↑m 𝐴) ↔ 𝑓:π΄βŸΆπ‘‹))
1411, 12, 13syl2anr 596 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑓 ∈ (𝑋 ↑m 𝐴) ↔ 𝑓:π΄βŸΆπ‘‹))
15 distopon 22721 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝒫 𝐴 ∈ (TopOnβ€˜π΄))
16 iscn 22960 . . . 4 ((𝒫 𝐴 ∈ (TopOnβ€˜π΄) ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:π΄βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝐽 (◑𝑓 β€œ π‘₯) ∈ 𝒫 𝐴)))
1715, 16sylan 579 . . 3 ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:π΄βŸΆπ‘‹ ∧ βˆ€π‘₯ ∈ 𝐽 (◑𝑓 β€œ π‘₯) ∈ 𝒫 𝐴)))
1810, 14, 173bitr4rd 312 . 2 ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋 ↑m 𝐴)))
1918eqrdv 2729 1 ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOnβ€˜π‘‹)) β†’ (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑m 𝐴))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060   βŠ† wss 3948  π’« cpw 4602  β—‘ccnv 5675  dom cdm 5676   β€œ cima 5679  βŸΆwf 6539  β€˜cfv 6543  (class class class)co 7412   ↑m cmap 8823  TopOnctopon 22633   Cn ccn 22949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-map 8825  df-top 22617  df-topon 22634  df-cn 22952
This theorem is referenced by:  xkopt  23380  distgp  23824  efmndtmd  23826  symgtgp  23831
  Copyright terms: Public domain W3C validator