MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cndis Structured version   Visualization version   GIF version

Theorem cndis 23206
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cndis ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋m 𝐴))

Proof of Theorem cndis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 6030 . . . . . . . 8 (𝑓𝑥) ⊆ dom 𝑓
2 fdm 6660 . . . . . . . . 9 (𝑓:𝐴𝑋 → dom 𝑓 = 𝐴)
32adantl 481 . . . . . . . 8 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → dom 𝑓 = 𝐴)
41, 3sseqtrid 3972 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ⊆ 𝐴)
5 elpw2g 5269 . . . . . . . 8 (𝐴𝑉 → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
65ad2antrr 726 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
74, 6mpbird 257 . . . . . 6 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
87ralrimivw 3128 . . . . 5 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)
98ex 412 . . . 4 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴))
109pm4.71d 561 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
11 toponmax 22841 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
13 elmapg 8763 . . . 4 ((𝑋𝐽𝐴𝑉) → (𝑓 ∈ (𝑋m 𝐴) ↔ 𝑓:𝐴𝑋))
1411, 12, 13syl2anr 597 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋m 𝐴) ↔ 𝑓:𝐴𝑋))
15 distopon 22912 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
16 iscn 23150 . . . 4 ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1715, 16sylan 580 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1810, 14, 173bitr4rd 312 . 2 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋m 𝐴)))
1918eqrdv 2729 1 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047  wss 3897  𝒫 cpw 4547  ccnv 5613  dom cdm 5614  cima 5617  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  TopOnctopon 22825   Cn ccn 23139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-top 22809  df-topon 22826  df-cn 23142
This theorem is referenced by:  xkopt  23570  distgp  24014  efmndtmd  24016  symgtgp  24021
  Copyright terms: Public domain W3C validator