![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cndis | Structured version Visualization version GIF version |
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cndis | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 5817 | . . . . . . . 8 ⊢ (◡𝑓 “ 𝑥) ⊆ dom 𝑓 | |
2 | fdm 6382 | . . . . . . . . 9 ⊢ (𝑓:𝐴⟶𝑋 → dom 𝑓 = 𝐴) | |
3 | 2 | adantl 482 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → dom 𝑓 = 𝐴) |
4 | 1, 3 | sseqtrid 3935 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ⊆ 𝐴) |
5 | elpw2g 5131 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) | |
6 | 5 | ad2antrr 722 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) |
7 | 4, 6 | mpbird 258 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
8 | 7 | ralrimivw 3148 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
9 | 8 | ex 413 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
10 | 9 | pm4.71d 562 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
11 | toponmax 21206 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
12 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
13 | elmapg 8260 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝑋 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝑋)) | |
14 | 11, 12, 13 | syl2anr 596 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋 ↑𝑚 𝐴) ↔ 𝑓:𝐴⟶𝑋)) |
15 | distopon 21277 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | |
16 | iscn 21515 | . . . 4 ⊢ ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) | |
17 | 15, 16 | sylan 580 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
18 | 10, 14, 17 | 3bitr4rd 313 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋 ↑𝑚 𝐴))) |
19 | 18 | eqrdv 2791 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑𝑚 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 = wceq 1520 ∈ wcel 2079 ∀wral 3103 ⊆ wss 3854 𝒫 cpw 4447 ◡ccnv 5434 dom cdm 5435 “ cima 5438 ⟶wf 6213 ‘cfv 6217 (class class class)co 7007 ↑𝑚 cmap 8247 TopOnctopon 21190 Cn ccn 21504 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-sbc 3702 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-mpt 5036 df-id 5340 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-fv 6225 df-ov 7010 df-oprab 7011 df-mpo 7012 df-map 8249 df-top 21174 df-topon 21191 df-cn 21507 |
This theorem is referenced by: xkopt 21935 distgp 22379 symgtgp 22381 |
Copyright terms: Public domain | W3C validator |