![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cndis | Structured version Visualization version GIF version |
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.) |
Ref | Expression |
---|---|
cndis | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑m 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvimass 6091 | . . . . . . . 8 ⊢ (◡𝑓 “ 𝑥) ⊆ dom 𝑓 | |
2 | fdm 6737 | . . . . . . . . 9 ⊢ (𝑓:𝐴⟶𝑋 → dom 𝑓 = 𝐴) | |
3 | 2 | adantl 480 | . . . . . . . 8 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → dom 𝑓 = 𝐴) |
4 | 1, 3 | sseqtrid 4032 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ⊆ 𝐴) |
5 | elpw2g 5351 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑉 → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) | |
6 | 5 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ((◡𝑓 “ 𝑥) ∈ 𝒫 𝐴 ↔ (◡𝑓 “ 𝑥) ⊆ 𝐴)) |
7 | 4, 6 | mpbird 256 | . . . . . 6 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
8 | 7 | ralrimivw 3140 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴⟶𝑋) → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴) |
9 | 8 | ex 411 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 → ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴)) |
10 | 9 | pm4.71d 560 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴⟶𝑋 ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
11 | toponmax 22919 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
12 | id 22 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
13 | elmapg 8868 | . . . 4 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 ∈ 𝑉) → (𝑓 ∈ (𝑋 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝑋)) | |
14 | 11, 12, 13 | syl2anr 595 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋 ↑m 𝐴) ↔ 𝑓:𝐴⟶𝑋)) |
15 | distopon 22991 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴)) | |
16 | iscn 23230 | . . . 4 ⊢ ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) | |
17 | 15, 16 | sylan 578 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐽 (◡𝑓 “ 𝑥) ∈ 𝒫 𝐴))) |
18 | 10, 14, 17 | 3bitr4rd 311 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋 ↑m 𝐴))) |
19 | 18 | eqrdv 2724 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋 ↑m 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ⊆ wss 3947 𝒫 cpw 4607 ◡ccnv 5681 dom cdm 5682 “ cima 5685 ⟶wf 6550 ‘cfv 6554 (class class class)co 7424 ↑m cmap 8855 TopOnctopon 22903 Cn ccn 23219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-fv 6562 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8857 df-top 22887 df-topon 22904 df-cn 23222 |
This theorem is referenced by: xkopt 23650 distgp 24094 efmndtmd 24096 symgtgp 24101 |
Copyright terms: Public domain | W3C validator |