MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cndis Structured version   Visualization version   GIF version

Theorem cndis 22442
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cndis ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋m 𝐴))

Proof of Theorem cndis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5989 . . . . . . . 8 (𝑓𝑥) ⊆ dom 𝑓
2 fdm 6609 . . . . . . . . 9 (𝑓:𝐴𝑋 → dom 𝑓 = 𝐴)
32adantl 482 . . . . . . . 8 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → dom 𝑓 = 𝐴)
41, 3sseqtrid 3973 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ⊆ 𝐴)
5 elpw2g 5268 . . . . . . . 8 (𝐴𝑉 → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
65ad2antrr 723 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
74, 6mpbird 256 . . . . . 6 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
87ralrimivw 3104 . . . . 5 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)
98ex 413 . . . 4 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴))
109pm4.71d 562 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
11 toponmax 22075 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
13 elmapg 8628 . . . 4 ((𝑋𝐽𝐴𝑉) → (𝑓 ∈ (𝑋m 𝐴) ↔ 𝑓:𝐴𝑋))
1411, 12, 13syl2anr 597 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋m 𝐴) ↔ 𝑓:𝐴𝑋))
15 distopon 22147 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
16 iscn 22386 . . . 4 ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1715, 16sylan 580 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1810, 14, 173bitr4rd 312 . 2 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋m 𝐴)))
1918eqrdv 2736 1 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  𝒫 cpw 4533  ccnv 5588  dom cdm 5589  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  TopOnctopon 22059   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-top 22043  df-topon 22060  df-cn 22378
This theorem is referenced by:  xkopt  22806  distgp  23250  efmndtmd  23252  symgtgp  23257
  Copyright terms: Public domain W3C validator