MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cndis Structured version   Visualization version   GIF version

Theorem cndis 21899
Description: Every function is continuous when the domain is discrete. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 21-Aug-2015.)
Assertion
Ref Expression
cndis ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋m 𝐴))

Proof of Theorem cndis
Dummy variables 𝑥 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvimass 5949 . . . . . . . 8 (𝑓𝑥) ⊆ dom 𝑓
2 fdm 6522 . . . . . . . . 9 (𝑓:𝐴𝑋 → dom 𝑓 = 𝐴)
32adantl 484 . . . . . . . 8 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → dom 𝑓 = 𝐴)
41, 3sseqtrid 4019 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ⊆ 𝐴)
5 elpw2g 5247 . . . . . . . 8 (𝐴𝑉 → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
65ad2antrr 724 . . . . . . 7 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ((𝑓𝑥) ∈ 𝒫 𝐴 ↔ (𝑓𝑥) ⊆ 𝐴))
74, 6mpbird 259 . . . . . 6 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → (𝑓𝑥) ∈ 𝒫 𝐴)
87ralrimivw 3183 . . . . 5 (((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) ∧ 𝑓:𝐴𝑋) → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)
98ex 415 . . . 4 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 → ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴))
109pm4.71d 564 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓:𝐴𝑋 ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
11 toponmax 21534 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
12 id 22 . . . 4 (𝐴𝑉𝐴𝑉)
13 elmapg 8419 . . . 4 ((𝑋𝐽𝐴𝑉) → (𝑓 ∈ (𝑋m 𝐴) ↔ 𝑓:𝐴𝑋))
1411, 12, 13syl2anr 598 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝑋m 𝐴) ↔ 𝑓:𝐴𝑋))
15 distopon 21605 . . . 4 (𝐴𝑉 → 𝒫 𝐴 ∈ (TopOn‘𝐴))
16 iscn 21843 . . . 4 ((𝒫 𝐴 ∈ (TopOn‘𝐴) ∧ 𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1715, 16sylan 582 . . 3 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ (𝑓:𝐴𝑋 ∧ ∀𝑥𝐽 (𝑓𝑥) ∈ 𝒫 𝐴)))
1810, 14, 173bitr4rd 314 . 2 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝑓 ∈ (𝒫 𝐴 Cn 𝐽) ↔ 𝑓 ∈ (𝑋m 𝐴)))
1918eqrdv 2819 1 ((𝐴𝑉𝐽 ∈ (TopOn‘𝑋)) → (𝒫 𝐴 Cn 𝐽) = (𝑋m 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3138  wss 3936  𝒫 cpw 4539  ccnv 5554  dom cdm 5555  cima 5558  wf 6351  cfv 6355  (class class class)co 7156  m cmap 8406  TopOnctopon 21518   Cn ccn 21832
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-map 8408  df-top 21502  df-topon 21519  df-cn 21835
This theorem is referenced by:  xkopt  22263  distgp  22707  efmndtmd  22709  symgtgp  22714
  Copyright terms: Public domain W3C validator