Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapssbaN Structured version   Visualization version   GIF version

Theorem pmapssbaN 38935
Description: A weakening of pmapssat 38934 to shorten some proofs. (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapssba.b 𝐡 = (Baseβ€˜πΎ)
pmapssba.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
pmapssbaN ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) βŠ† 𝐡)

Proof of Theorem pmapssbaN
StepHypRef Expression
1 pmapssba.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 eqid 2731 . . 3 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
3 pmapssba.m . . 3 𝑀 = (pmapβ€˜πΎ)
41, 2, 3pmapssat 38934 . 2 ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) βŠ† (Atomsβ€˜πΎ))
51, 2atssbase 38464 . 2 (Atomsβ€˜πΎ) βŠ† 𝐡
64, 5sstrdi 3995 1 ((𝐾 ∈ 𝐢 ∧ 𝑋 ∈ 𝐡) β†’ (π‘€β€˜π‘‹) βŠ† 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105   βŠ† wss 3949  β€˜cfv 6544  Basecbs 17149  Atomscatm 38437  pmapcpmap 38672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ats 38441  df-pmap 38679
This theorem is referenced by:  paddunN  39102
  Copyright terms: Public domain W3C validator