Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapssbaN Structured version   Visualization version   GIF version

Theorem pmapssbaN 39743
Description: A weakening of pmapssat 39742 to shorten some proofs. (Contributed by NM, 7-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmapssba.b 𝐵 = (Base‘𝐾)
pmapssba.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapssbaN ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐵)

Proof of Theorem pmapssbaN
StepHypRef Expression
1 pmapssba.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2735 . . 3 (Atoms‘𝐾) = (Atoms‘𝐾)
3 pmapssba.m . . 3 𝑀 = (pmap‘𝐾)
41, 2, 3pmapssat 39742 . 2 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ (Atoms‘𝐾))
51, 2atssbase 39272 . 2 (Atoms‘𝐾) ⊆ 𝐵
64, 5sstrdi 4008 1 ((𝐾𝐶𝑋𝐵) → (𝑀𝑋) ⊆ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  cfv 6563  Basecbs 17245  Atomscatm 39245  pmapcpmap 39480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ats 39249  df-pmap 39487
This theorem is referenced by:  paddunN  39910
  Copyright terms: Public domain W3C validator