Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddunN Structured version   Visualization version   GIF version

Theorem paddunN 35709
Description: The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6415.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a 𝐴 = (Atoms‘𝐾)
paddun.p + = (+𝑃𝐾)
paddun.o = (⊥𝑃𝐾)
Assertion
Ref Expression
paddunN ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))

Proof of Theorem paddunN
StepHypRef Expression
1 simp1 1159 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ HL)
2 paddun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 paddun.p . . . 4 + = (+𝑃𝐾)
42, 3paddssat 35596 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ 𝐴)
52, 3paddunssN 35590 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ (𝑆 + 𝑇))
6 paddun.o . . . 4 = (⊥𝑃𝐾)
72, 6polcon3N 35699 . . 3 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆𝑇) ⊆ (𝑆 + 𝑇)) → ( ‘(𝑆 + 𝑇)) ⊆ ( ‘(𝑆𝑇)))
81, 4, 5, 7syl3anc 1483 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) ⊆ ( ‘(𝑆𝑇)))
9 hlclat 35140 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1093ad2ant1 1156 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ CLat)
11 unss 3993 . . . . . . . . . . 11 ((𝑆𝐴𝑇𝐴) ↔ (𝑆𝑇) ⊆ 𝐴)
1211biimpi 207 . . . . . . . . . 10 ((𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
13123adant1 1153 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
14 eqid 2813 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1514, 2atssbase 35072 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
1613, 15syl6ss 3817 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ (Base‘𝐾))
17 eqid 2813 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
1814, 17clatlubcl 17320 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (𝑆𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾))
1910, 16, 18syl2anc 575 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾))
20 eqid 2813 . . . . . . . 8 (pmap‘𝐾) = (pmap‘𝐾)
2114, 20pmapssbaN 35542 . . . . . . 7 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾))
221, 19, 21syl2anc 575 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾))
232, 6polssatN 35690 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) ⊆ 𝐴)
24233adant3 1155 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑆) ⊆ 𝐴)
252, 6polssatN 35690 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ( 𝑆) ⊆ 𝐴) → ( ‘( 𝑆)) ⊆ 𝐴)
261, 24, 25syl2anc 575 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑆)) ⊆ 𝐴)
272, 6polssatN 35690 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( 𝑇) ⊆ 𝐴)
28273adant2 1154 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑇) ⊆ 𝐴)
292, 6polssatN 35690 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ( 𝑇) ⊆ 𝐴) → ( ‘( 𝑇)) ⊆ 𝐴)
301, 28, 29syl2anc 575 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑇)) ⊆ 𝐴)
311, 26, 303jca 1151 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝐾 ∈ HL ∧ ( ‘( 𝑆)) ⊆ 𝐴 ∧ ( ‘( 𝑇)) ⊆ 𝐴))
322, 62polssN 35697 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → 𝑆 ⊆ ( ‘( 𝑆)))
33323adant3 1155 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ ( ‘( 𝑆)))
342, 62polssN 35697 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑇𝐴) → 𝑇 ⊆ ( ‘( 𝑇)))
35343adant2 1154 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ ( ‘( 𝑇)))
3633, 35jca 503 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 ⊆ ( ‘( 𝑆)) ∧ 𝑇 ⊆ ( ‘( 𝑇))))
372, 3paddss12 35601 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ( ‘( 𝑆)) ⊆ 𝐴 ∧ ( ‘( 𝑇)) ⊆ 𝐴) → ((𝑆 ⊆ ( ‘( 𝑆)) ∧ 𝑇 ⊆ ( ‘( 𝑇))) → (𝑆 + 𝑇) ⊆ (( ‘( 𝑆)) + ( ‘( 𝑇)))))
3831, 36, 37sylc 65 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (( ‘( 𝑆)) + ( ‘( 𝑇))))
3917, 2, 20, 62polvalN 35696 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
40393adant3 1155 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
4117, 2, 20, 62polvalN 35696 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( ‘( 𝑇)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))
42413adant2 1154 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑇)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))
4340, 42oveq12d 6895 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( ‘( 𝑆)) + ( ‘( 𝑇))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))))
4438, 43sseqtrd 3845 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))))
45 hllat 35145 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
46453ad2ant1 1156 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ Lat)
47 simp2 1160 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆𝐴)
4847, 15syl6ss 3817 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ (Base‘𝐾))
4914, 17clatlubcl 17320 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
5010, 48, 49syl2anc 575 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
51 simp3 1161 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇𝐴)
5251, 15syl6ss 3817 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ (Base‘𝐾))
5314, 17clatlubcl 17320 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
5410, 52, 53syl2anc 575 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
55 eqid 2813 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
5614, 55, 20, 3pmapjoin 35634 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5746, 50, 54, 56syl3anc 1483 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5844, 57sstrd 3815 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5914, 55, 17lubun 17331 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
6010, 48, 52, 59syl3anc 1483 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
6160fveq2d 6415 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
6258, 61sseqtr4d 3846 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
63 eqid 2813 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
6414, 63, 17lubss 17329 . . . . . 6 ((𝐾 ∈ CLat ∧ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾) ∧ (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
6510, 22, 62, 64syl3anc 1483 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
664, 15syl6ss 3817 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (Base‘𝐾))
6714, 17clatlubcl 17320 . . . . . . 7 ((𝐾 ∈ CLat ∧ (𝑆 + 𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾))
6810, 66, 67syl2anc 575 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾))
6914, 17clatlubcl 17320 . . . . . . 7 ((𝐾 ∈ CLat ∧ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾))
7010, 22, 69syl2anc 575 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾))
7114, 63, 20pmaple 35543 . . . . . 6 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))))
721, 68, 70, 71syl3anc 1483 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))))
7365, 72mpbid 223 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))))
7417, 2, 20, 62polvalN 35696 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴) → ( ‘( ‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))))
751, 4, 74syl2anc 575 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))))
7617, 2, 20, 62polvalN 35696 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
771, 13, 76syl2anc 575 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
7817, 2, 202pmaplubN 35708 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
791, 13, 78syl2anc 575 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
8077, 79eqtr4d 2850 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))))
8173, 75, 803sstr4d 3852 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))))
822, 62polcon4bN 35700 . . . 4 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆𝑇) ⊆ 𝐴) → (( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))) ↔ ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇))))
831, 4, 13, 82syl3anc 1483 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))) ↔ ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇))))
8481, 83mpbid 223 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇)))
858, 84eqssd 3822 1 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  cun 3774  wss 3776   class class class wbr 4851  cfv 6104  (class class class)co 6877  Basecbs 16071  lecple 16163  lubclub 17150  joincjn 17152  Latclat 17253  CLatccla 17315  Atomscatm 35045  HLchlt 35132  pmapcpmap 35279  +𝑃cpadd 35577  𝑃cpolN 35684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2791  ax-rep 4971  ax-sep 4982  ax-nul 4990  ax-pow 5042  ax-pr 5103  ax-un 7182  ax-riotaBAD 34734
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2638  df-clab 2800  df-cleq 2806  df-clel 2809  df-nfc 2944  df-ne 2986  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3400  df-sbc 3641  df-csb 3736  df-dif 3779  df-un 3781  df-in 3783  df-ss 3790  df-nul 4124  df-if 4287  df-pw 4360  df-sn 4378  df-pr 4380  df-op 4384  df-uni 4638  df-iun 4721  df-iin 4722  df-br 4852  df-opab 4914  df-mpt 4931  df-id 5226  df-xp 5324  df-rel 5325  df-cnv 5326  df-co 5327  df-dm 5328  df-rn 5329  df-res 5330  df-ima 5331  df-iota 6067  df-fun 6106  df-fn 6107  df-f 6108  df-f1 6109  df-fo 6110  df-f1o 6111  df-fv 6112  df-riota 6838  df-ov 6880  df-oprab 6881  df-mpt2 6882  df-1st 7401  df-2nd 7402  df-undef 7637  df-proset 17136  df-poset 17154  df-plt 17166  df-lub 17182  df-glb 17183  df-join 17184  df-meet 17185  df-p0 17247  df-p1 17248  df-lat 17254  df-clat 17316  df-oposet 34958  df-ol 34960  df-oml 34961  df-covers 35048  df-ats 35049  df-atl 35080  df-cvlat 35104  df-hlat 35133  df-psubsp 35285  df-pmap 35286  df-padd 35578  df-polarityN 35685
This theorem is referenced by:  poldmj1N  35710
  Copyright terms: Public domain W3C validator