Proof of Theorem paddunN
Step | Hyp | Ref
| Expression |
1 | | simp1 1135 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝐾 ∈ HL) |
2 | | paddun.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
3 | | paddun.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
4 | 2, 3 | paddssat 37828 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 + 𝑇) ⊆ 𝐴) |
5 | 2, 3 | paddunssN 37822 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 ∪ 𝑇) ⊆ (𝑆 + 𝑇)) |
6 | | paddun.o |
. . . 4
⊢ ⊥ =
(⊥𝑃‘𝐾) |
7 | 2, 6 | polcon3N 37931 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆 ∪ 𝑇) ⊆ (𝑆 + 𝑇)) → ( ⊥ ‘(𝑆 + 𝑇)) ⊆ ( ⊥ ‘(𝑆 ∪ 𝑇))) |
8 | 1, 4, 5, 7 | syl3anc 1370 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) ⊆ ( ⊥ ‘(𝑆 ∪ 𝑇))) |
9 | | hlclat 37372 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
10 | 9 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝐾 ∈ CLat) |
11 | | unss 4118 |
. . . . . . . . . . 11
⊢ ((𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) ↔ (𝑆 ∪ 𝑇) ⊆ 𝐴) |
12 | 11 | biimpi 215 |
. . . . . . . . . 10
⊢ ((𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 ∪ 𝑇) ⊆ 𝐴) |
13 | 12 | 3adant1 1129 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 ∪ 𝑇) ⊆ 𝐴) |
14 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝐾) =
(Base‘𝐾) |
15 | 14, 2 | atssbase 37304 |
. . . . . . . . 9
⊢ 𝐴 ⊆ (Base‘𝐾) |
16 | 13, 15 | sstrdi 3933 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 ∪ 𝑇) ⊆ (Base‘𝐾)) |
17 | | eqid 2738 |
. . . . . . . . 9
⊢
(lub‘𝐾) =
(lub‘𝐾) |
18 | 14, 17 | clatlubcl 18221 |
. . . . . . . 8
⊢ ((𝐾 ∈ CLat ∧ (𝑆 ∪ 𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆 ∪ 𝑇)) ∈ (Base‘𝐾)) |
19 | 10, 16, 18 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘(𝑆 ∪ 𝑇)) ∈ (Base‘𝐾)) |
20 | | eqid 2738 |
. . . . . . . 8
⊢
(pmap‘𝐾) =
(pmap‘𝐾) |
21 | 14, 20 | pmapssbaN 37774 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧
((lub‘𝐾)‘(𝑆 ∪ 𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))) ⊆ (Base‘𝐾)) |
22 | 1, 19, 21 | syl2anc 584 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))) ⊆ (Base‘𝐾)) |
23 | 2, 6 | polssatN 37922 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘𝑆) ⊆ 𝐴) |
24 | 23 | 3adant3 1131 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘𝑆) ⊆ 𝐴) |
25 | 2, 6 | polssatN 37922 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘𝑆) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑆)) ⊆ 𝐴) |
26 | 1, 24, 25 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑆)) ⊆ 𝐴) |
27 | 2, 6 | polssatN 37922 |
. . . . . . . . . . . . 13
⊢ ((𝐾 ∈ HL ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘𝑇) ⊆ 𝐴) |
28 | 27 | 3adant2 1130 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘𝑇) ⊆ 𝐴) |
29 | 2, 6 | polssatN 37922 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘𝑇) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑇)) ⊆ 𝐴) |
30 | 1, 28, 29 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑇)) ⊆ 𝐴) |
31 | 1, 26, 30 | 3jca 1127 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝐾 ∈ HL ∧ ( ⊥ ‘( ⊥
‘𝑆)) ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑇)) ⊆ 𝐴)) |
32 | 2, 6 | 2polssN 37929 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → 𝑆 ⊆ ( ⊥ ‘( ⊥
‘𝑆))) |
33 | 32 | 3adant3 1131 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑆 ⊆ ( ⊥ ‘( ⊥
‘𝑆))) |
34 | 2, 6 | 2polssN 37929 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑇 ⊆ 𝐴) → 𝑇 ⊆ ( ⊥ ‘( ⊥
‘𝑇))) |
35 | 34 | 3adant2 1130 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑇 ⊆ ( ⊥ ‘( ⊥
‘𝑇))) |
36 | 33, 35 | jca 512 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 ⊆ ( ⊥ ‘( ⊥
‘𝑆)) ∧ 𝑇 ⊆ ( ⊥ ‘( ⊥
‘𝑇)))) |
37 | 2, 3 | paddss12 37833 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ ( ⊥
‘( ⊥ ‘𝑆)) ⊆ 𝐴 ∧ ( ⊥ ‘( ⊥
‘𝑇)) ⊆ 𝐴) → ((𝑆 ⊆ ( ⊥ ‘( ⊥
‘𝑆)) ∧ 𝑇 ⊆ ( ⊥ ‘( ⊥
‘𝑇))) → (𝑆 + 𝑇) ⊆ (( ⊥ ‘( ⊥
‘𝑆)) + ( ⊥
‘( ⊥ ‘𝑇))))) |
38 | 31, 36, 37 | sylc 65 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 + 𝑇) ⊆ (( ⊥ ‘( ⊥
‘𝑆)) + ( ⊥
‘( ⊥ ‘𝑇)))) |
39 | 17, 2, 20, 6 | 2polvalN 37928 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑆)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) |
40 | 39 | 3adant3 1131 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑆)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑆))) |
41 | 17, 2, 20, 6 | 2polvalN 37928 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑇)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) |
42 | 41 | 3adant2 1130 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘𝑇)) =
((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) |
43 | 40, 42 | oveq12d 7293 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘𝑆)) + ( ⊥
‘( ⊥ ‘𝑇))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))) |
44 | 38, 43 | sseqtrd 3961 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 + 𝑇) ⊆ (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))) |
45 | | hllat 37377 |
. . . . . . . . . 10
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
46 | 45 | 3ad2ant1 1132 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝐾 ∈ Lat) |
47 | | simp2 1136 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑆 ⊆ 𝐴) |
48 | 47, 15 | sstrdi 3933 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑆 ⊆ (Base‘𝐾)) |
49 | 14, 17 | clatlubcl 18221 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) |
50 | 10, 48, 49 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾)) |
51 | | simp3 1137 |
. . . . . . . . . . 11
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑇 ⊆ 𝐴) |
52 | 51, 15 | sstrdi 3933 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → 𝑇 ⊆ (Base‘𝐾)) |
53 | 14, 17 | clatlubcl 18221 |
. . . . . . . . . 10
⊢ ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) |
54 | 10, 52, 53 | syl2anc 584 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) |
55 | | eqid 2738 |
. . . . . . . . . 10
⊢
(join‘𝐾) =
(join‘𝐾) |
56 | 14, 55, 20, 3 | pmapjoin 37866 |
. . . . . . . . 9
⊢ ((𝐾 ∈ Lat ∧
((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))) |
57 | 46, 50, 54, 56 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))) |
58 | 44, 57 | sstrd 3931 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))) |
59 | 14, 55, 17 | lubun 18233 |
. . . . . . . . 9
⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆 ∪ 𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) |
60 | 10, 48, 52, 59 | syl3anc 1370 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘(𝑆 ∪ 𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))) |
61 | 60 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))) |
62 | 58, 61 | sseqtrrd 3962 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) |
63 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
64 | 14, 63, 17 | lubss 18231 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧
((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))) ⊆ (Base‘𝐾) ∧ (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))))) |
65 | 10, 22, 62, 64 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))))) |
66 | 4, 15 | sstrdi 3933 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (𝑆 + 𝑇) ⊆ (Base‘𝐾)) |
67 | 14, 17 | clatlubcl 18221 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ (𝑆 + 𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾)) |
68 | 10, 66, 67 | syl2anc 584 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾)) |
69 | 14, 17 | clatlubcl 18221 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧
((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) ∈ (Base‘𝐾)) |
70 | 10, 22, 69 | syl2anc 584 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) ∈ (Base‘𝐾)) |
71 | 14, 63, 20 | pmaple 37775 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧
((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))))))) |
72 | 1, 68, 70, 71 | syl3anc 1370 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))))))) |
73 | 65, 72 | mpbid 231 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))))) |
74 | 17, 2, 20, 6 | 2polvalN 37928 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇)))) |
75 | 1, 4, 74 | syl2anc 584 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇)))) |
76 | 17, 2, 20, 6 | 2polvalN 37928 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∪ 𝑇) ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑆 ∪ 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) |
77 | 1, 13, 76 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑆 ∪ 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) |
78 | 17, 2, 20 | 2pmaplubN 37940 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑆 ∪ 𝑇) ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) |
79 | 1, 13, 78 | syl2anc 584 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))) |
80 | 77, 79 | eqtr4d 2781 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑆 ∪ 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 ∪ 𝑇)))))) |
81 | 73, 75, 80 | 3sstr4d 3968 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘( ⊥
‘(𝑆 + 𝑇))) ⊆ ( ⊥ ‘( ⊥
‘(𝑆 ∪ 𝑇)))) |
82 | 2, 6 | 2polcon4bN 37932 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆 ∪ 𝑇) ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘(𝑆 + 𝑇))) ⊆ ( ⊥ ‘( ⊥
‘(𝑆 ∪ 𝑇))) ↔ ( ⊥ ‘(𝑆 ∪ 𝑇)) ⊆ ( ⊥ ‘(𝑆 + 𝑇)))) |
83 | 1, 4, 13, 82 | syl3anc 1370 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → (( ⊥ ‘( ⊥
‘(𝑆 + 𝑇))) ⊆ ( ⊥ ‘( ⊥
‘(𝑆 ∪ 𝑇))) ↔ ( ⊥ ‘(𝑆 ∪ 𝑇)) ⊆ ( ⊥ ‘(𝑆 + 𝑇)))) |
84 | 81, 83 | mpbid 231 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 ∪ 𝑇)) ⊆ ( ⊥ ‘(𝑆 + 𝑇))) |
85 | 8, 84 | eqssd 3938 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴 ∧ 𝑇 ⊆ 𝐴) → ( ⊥ ‘(𝑆 + 𝑇)) = ( ⊥ ‘(𝑆 ∪ 𝑇))) |