Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  paddunN Structured version   Visualization version   GIF version

Theorem paddunN 39951
Description: The closure of the projective sum of two sets of atoms is the same as the closure of their union. (Closure is actually double polarity, which can be trivially inferred from this theorem using fveq2d 6885.) (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddun.a 𝐴 = (Atoms‘𝐾)
paddun.p + = (+𝑃𝐾)
paddun.o = (⊥𝑃𝐾)
Assertion
Ref Expression
paddunN ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))

Proof of Theorem paddunN
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ HL)
2 paddun.a . . . 4 𝐴 = (Atoms‘𝐾)
3 paddun.p . . . 4 + = (+𝑃𝐾)
42, 3paddssat 39838 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ 𝐴)
52, 3paddunssN 39832 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ (𝑆 + 𝑇))
6 paddun.o . . . 4 = (⊥𝑃𝐾)
72, 6polcon3N 39941 . . 3 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆𝑇) ⊆ (𝑆 + 𝑇)) → ( ‘(𝑆 + 𝑇)) ⊆ ( ‘(𝑆𝑇)))
81, 4, 5, 7syl3anc 1373 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) ⊆ ( ‘(𝑆𝑇)))
9 hlclat 39381 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ CLat)
1093ad2ant1 1133 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ CLat)
11 unss 4170 . . . . . . . . . . 11 ((𝑆𝐴𝑇𝐴) ↔ (𝑆𝑇) ⊆ 𝐴)
1211biimpi 216 . . . . . . . . . 10 ((𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
13123adant1 1130 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ 𝐴)
14 eqid 2736 . . . . . . . . . 10 (Base‘𝐾) = (Base‘𝐾)
1514, 2atssbase 39313 . . . . . . . . 9 𝐴 ⊆ (Base‘𝐾)
1613, 15sstrdi 3976 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆𝑇) ⊆ (Base‘𝐾))
17 eqid 2736 . . . . . . . . 9 (lub‘𝐾) = (lub‘𝐾)
1814, 17clatlubcl 18518 . . . . . . . 8 ((𝐾 ∈ CLat ∧ (𝑆𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾))
1910, 16, 18syl2anc 584 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾))
20 eqid 2736 . . . . . . . 8 (pmap‘𝐾) = (pmap‘𝐾)
2114, 20pmapssbaN 39784 . . . . . . 7 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘(𝑆𝑇)) ∈ (Base‘𝐾)) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾))
221, 19, 21syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾))
232, 6polssatN 39932 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( 𝑆) ⊆ 𝐴)
24233adant3 1132 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑆) ⊆ 𝐴)
252, 6polssatN 39932 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ( 𝑆) ⊆ 𝐴) → ( ‘( 𝑆)) ⊆ 𝐴)
261, 24, 25syl2anc 584 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑆)) ⊆ 𝐴)
272, 6polssatN 39932 . . . . . . . . . . . . 13 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( 𝑇) ⊆ 𝐴)
28273adant2 1131 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( 𝑇) ⊆ 𝐴)
292, 6polssatN 39932 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ ( 𝑇) ⊆ 𝐴) → ( ‘( 𝑇)) ⊆ 𝐴)
301, 28, 29syl2anc 584 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑇)) ⊆ 𝐴)
311, 26, 303jca 1128 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝐾 ∈ HL ∧ ( ‘( 𝑆)) ⊆ 𝐴 ∧ ( ‘( 𝑇)) ⊆ 𝐴))
322, 62polssN 39939 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑆𝐴) → 𝑆 ⊆ ( ‘( 𝑆)))
33323adant3 1132 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ ( ‘( 𝑆)))
342, 62polssN 39939 . . . . . . . . . . . 12 ((𝐾 ∈ HL ∧ 𝑇𝐴) → 𝑇 ⊆ ( ‘( 𝑇)))
35343adant2 1131 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ ( ‘( 𝑇)))
3633, 35jca 511 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 ⊆ ( ‘( 𝑆)) ∧ 𝑇 ⊆ ( ‘( 𝑇))))
372, 3paddss12 39843 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ ( ‘( 𝑆)) ⊆ 𝐴 ∧ ( ‘( 𝑇)) ⊆ 𝐴) → ((𝑆 ⊆ ( ‘( 𝑆)) ∧ 𝑇 ⊆ ( ‘( 𝑇))) → (𝑆 + 𝑇) ⊆ (( ‘( 𝑆)) + ( ‘( 𝑇)))))
3831, 36, 37sylc 65 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (( ‘( 𝑆)) + ( ‘( 𝑇))))
3917, 2, 20, 62polvalN 39938 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
40393adant3 1132 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑆)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)))
4117, 2, 20, 62polvalN 39938 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑇𝐴) → ( ‘( 𝑇)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))
42413adant2 1131 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( 𝑇)) = ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇)))
4340, 42oveq12d 7428 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( ‘( 𝑆)) + ( ‘( 𝑇))) = (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))))
4438, 43sseqtrd 4000 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))))
45 hllat 39386 . . . . . . . . . 10 (𝐾 ∈ HL → 𝐾 ∈ Lat)
46453ad2ant1 1133 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝐾 ∈ Lat)
47 simp2 1137 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆𝐴)
4847, 15sstrdi 3976 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑆 ⊆ (Base‘𝐾))
4914, 17clatlubcl 18518 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
5010, 48, 49syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾))
51 simp3 1138 . . . . . . . . . . 11 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇𝐴)
5251, 15sstrdi 3976 . . . . . . . . . 10 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → 𝑇 ⊆ (Base‘𝐾))
5314, 17clatlubcl 18518 . . . . . . . . . 10 ((𝐾 ∈ CLat ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
5410, 52, 53syl2anc 584 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾))
55 eqid 2736 . . . . . . . . . 10 (join‘𝐾) = (join‘𝐾)
5614, 55, 20, 3pmapjoin 39876 . . . . . . . . 9 ((𝐾 ∈ Lat ∧ ((lub‘𝐾)‘𝑆) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘𝑇) ∈ (Base‘𝐾)) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5746, 50, 54, 56syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (((pmap‘𝐾)‘((lub‘𝐾)‘𝑆)) + ((pmap‘𝐾)‘((lub‘𝐾)‘𝑇))) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5844, 57sstrd 3974 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
5914, 55, 17lubun 18530 . . . . . . . . 9 ((𝐾 ∈ CLat ∧ 𝑆 ⊆ (Base‘𝐾) ∧ 𝑇 ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
6010, 48, 52, 59syl3anc 1373 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆𝑇)) = (((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇)))
6160fveq2d 6885 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) = ((pmap‘𝐾)‘(((lub‘𝐾)‘𝑆)(join‘𝐾)((lub‘𝐾)‘𝑇))))
6258, 61sseqtrrd 4001 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
63 eqid 2736 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
6414, 63, 17lubss 18528 . . . . . 6 ((𝐾 ∈ CLat ∧ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾) ∧ (𝑆 + 𝑇) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
6510, 22, 62, 64syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))
664, 15sstrdi 3976 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (𝑆 + 𝑇) ⊆ (Base‘𝐾))
6714, 17clatlubcl 18518 . . . . . . 7 ((𝐾 ∈ CLat ∧ (𝑆 + 𝑇) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾))
6810, 66, 67syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾))
6914, 17clatlubcl 18518 . . . . . . 7 ((𝐾 ∈ CLat ∧ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))) ⊆ (Base‘𝐾)) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾))
7010, 22, 69syl2anc 584 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾))
7114, 63, 20pmaple 39785 . . . . . 6 ((𝐾 ∈ HL ∧ ((lub‘𝐾)‘(𝑆 + 𝑇)) ∈ (Base‘𝐾) ∧ ((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ∈ (Base‘𝐾)) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))))
721, 68, 70, 71syl3anc 1373 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (((lub‘𝐾)‘(𝑆 + 𝑇))(le‘𝐾)((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))) ↔ ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇)))))))
7365, 72mpbid 232 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))) ⊆ ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))))
7417, 2, 20, 62polvalN 39938 . . . . 5 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴) → ( ‘( ‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))))
751, 4, 74syl2anc 584 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆 + 𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆 + 𝑇))))
7617, 2, 20, 62polvalN 39938 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
771, 13, 76syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
7817, 2, 202pmaplubN 39950 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑆𝑇) ⊆ 𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
791, 13, 78syl2anc 584 . . . . 5 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))) = ((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))
8077, 79eqtr4d 2774 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆𝑇))) = ((pmap‘𝐾)‘((lub‘𝐾)‘((pmap‘𝐾)‘((lub‘𝐾)‘(𝑆𝑇))))))
8173, 75, 803sstr4d 4019 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))))
822, 62polcon4bN 39942 . . . 4 ((𝐾 ∈ HL ∧ (𝑆 + 𝑇) ⊆ 𝐴 ∧ (𝑆𝑇) ⊆ 𝐴) → (( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))) ↔ ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇))))
831, 4, 13, 82syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → (( ‘( ‘(𝑆 + 𝑇))) ⊆ ( ‘( ‘(𝑆𝑇))) ↔ ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇))))
8481, 83mpbid 232 . 2 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆𝑇)) ⊆ ( ‘(𝑆 + 𝑇)))
858, 84eqssd 3981 1 ((𝐾 ∈ HL ∧ 𝑆𝐴𝑇𝐴) → ( ‘(𝑆 + 𝑇)) = ( ‘(𝑆𝑇)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  cun 3929  wss 3931   class class class wbr 5124  cfv 6536  (class class class)co 7410  Basecbs 17233  lecple 17283  lubclub 18326  joincjn 18328  Latclat 18446  CLatccla 18513  Atomscatm 39286  HLchlt 39373  pmapcpmap 39521  +𝑃cpadd 39819  𝑃cpolN 39926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-polarityN 39927
This theorem is referenced by:  poldmj1N  39952
  Copyright terms: Public domain W3C validator