Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version |
Description: The set of atoms is a subset of the base set. (atssch 30754 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atombase.b | ⊢ 𝐵 = (Base‘𝐾) |
atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atssbase | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atbase 37503 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
4 | 3 | ssriv 3930 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊆ wss 3892 ‘cfv 6458 Basecbs 16961 Atomscatm 37477 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-iota 6410 df-fun 6460 df-fv 6466 df-ats 37481 |
This theorem is referenced by: atlatmstc 37533 atlatle 37534 pmapssbaN 37974 pmaple 37975 polsubN 38121 2polvalN 38128 2polssN 38129 3polN 38130 2pmaplubN 38140 paddunN 38141 poldmj1N 38142 pnonsingN 38147 ispsubcl2N 38161 psubclinN 38162 paddatclN 38163 polsubclN 38166 poml4N 38167 |
Copyright terms: Public domain | W3C validator |