Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atssbase Structured version   Visualization version   GIF version

Theorem atssbase 39313
Description: The set of atoms is a subset of the base set. (atssch 32329 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atombase.b 𝐵 = (Base‘𝐾)
atombase.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atssbase 𝐴𝐵

Proof of Theorem atssbase
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atombase.b . . 3 𝐵 = (Base‘𝐾)
2 atombase.a . . 3 𝐴 = (Atoms‘𝐾)
31, 2atbase 39312 . 2 (𝑥𝐴𝑥𝐵)
43ssriv 3967 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wss 3931  cfv 6536  Basecbs 17233  Atomscatm 39286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-ats 39290
This theorem is referenced by:  atlatmstc  39342  atlatle  39343  pmapssbaN  39784  pmaple  39785  polsubN  39931  2polvalN  39938  2polssN  39939  3polN  39940  2pmaplubN  39950  paddunN  39951  poldmj1N  39952  pnonsingN  39957  ispsubcl2N  39971  psubclinN  39972  paddatclN  39973  polsubclN  39976  poml4N  39977
  Copyright terms: Public domain W3C validator