| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version | ||
| Description: The set of atoms is a subset of the base set. (atssch 32279 analog.) (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| atombase.b | ⊢ 𝐵 = (Base‘𝐾) |
| atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atssbase | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atbase 39289 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 4 | 3 | ssriv 3953 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊆ wss 3917 ‘cfv 6514 Basecbs 17186 Atomscatm 39263 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ats 39267 |
| This theorem is referenced by: atlatmstc 39319 atlatle 39320 pmapssbaN 39761 pmaple 39762 polsubN 39908 2polvalN 39915 2polssN 39916 3polN 39917 2pmaplubN 39927 paddunN 39928 poldmj1N 39929 pnonsingN 39934 ispsubcl2N 39948 psubclinN 39949 paddatclN 39950 polsubclN 39953 poml4N 39954 |
| Copyright terms: Public domain | W3C validator |