Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atssbase Structured version   Visualization version   GIF version

Theorem atssbase 38148
Description: The set of atoms is a subset of the base set. (atssch 31583 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atombase.b 𝐡 = (Baseβ€˜πΎ)
atombase.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
atssbase 𝐴 βŠ† 𝐡

Proof of Theorem atssbase
Dummy variable π‘₯ is distinct from all other variables.
StepHypRef Expression
1 atombase.b . . 3 𝐡 = (Baseβ€˜πΎ)
2 atombase.a . . 3 𝐴 = (Atomsβ€˜πΎ)
31, 2atbase 38147 . 2 (π‘₯ ∈ 𝐴 β†’ π‘₯ ∈ 𝐡)
43ssriv 3985 1 𝐴 βŠ† 𝐡
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541   βŠ† wss 3947  β€˜cfv 6540  Basecbs 17140  Atomscatm 38121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ats 38125
This theorem is referenced by:  atlatmstc  38177  atlatle  38178  pmapssbaN  38619  pmaple  38620  polsubN  38766  2polvalN  38773  2polssN  38774  3polN  38775  2pmaplubN  38785  paddunN  38786  poldmj1N  38787  pnonsingN  38792  ispsubcl2N  38806  psubclinN  38807  paddatclN  38808  polsubclN  38811  poml4N  38812
  Copyright terms: Public domain W3C validator