|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version | ||
| Description: The set of atoms is a subset of the base set. (atssch 32363 analog.) (Contributed by NM, 21-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| atombase.b | ⊢ 𝐵 = (Base‘𝐾) | 
| atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) | 
| Ref | Expression | 
|---|---|
| atssbase | ⊢ 𝐴 ⊆ 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atbase 39291 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) | 
| 4 | 3 | ssriv 3986 | 1 ⊢ 𝐴 ⊆ 𝐵 | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ⊆ wss 3950 ‘cfv 6560 Basecbs 17248 Atomscatm 39265 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-iota 6513 df-fun 6562 df-fv 6568 df-ats 39269 | 
| This theorem is referenced by: atlatmstc 39321 atlatle 39322 pmapssbaN 39763 pmaple 39764 polsubN 39910 2polvalN 39917 2polssN 39918 3polN 39919 2pmaplubN 39929 paddunN 39930 poldmj1N 39931 pnonsingN 39936 ispsubcl2N 39950 psubclinN 39951 paddatclN 39952 polsubclN 39955 poml4N 39956 | 
| Copyright terms: Public domain | W3C validator |