Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atssbase Structured version   Visualization version   GIF version

Theorem atssbase 37283
Description: The set of atoms is a subset of the base set. (atssch 30684 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atombase.b 𝐵 = (Base‘𝐾)
atombase.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atssbase 𝐴𝐵

Proof of Theorem atssbase
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atombase.b . . 3 𝐵 = (Base‘𝐾)
2 atombase.a . . 3 𝐴 = (Atoms‘𝐾)
31, 2atbase 37282 . 2 (𝑥𝐴𝑥𝐵)
43ssriv 3929 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3891  cfv 6430  Basecbs 16893  Atomscatm 37256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-iota 6388  df-fun 6432  df-fv 6438  df-ats 37260
This theorem is referenced by:  atlatmstc  37312  atlatle  37313  pmapssbaN  37753  pmaple  37754  polsubN  37900  2polvalN  37907  2polssN  37908  3polN  37909  2pmaplubN  37919  paddunN  37920  poldmj1N  37921  pnonsingN  37926  ispsubcl2N  37940  psubclinN  37941  paddatclN  37942  polsubclN  37945  poml4N  37946
  Copyright terms: Public domain W3C validator