Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version |
Description: The set of atoms is a subset of the base set. (atssch 30424 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atombase.b | ⊢ 𝐵 = (Base‘𝐾) |
atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atssbase | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atbase 37040 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
4 | 3 | ssriv 3905 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1543 ⊆ wss 3866 ‘cfv 6380 Basecbs 16760 Atomscatm 37014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-iota 6338 df-fun 6382 df-fv 6388 df-ats 37018 |
This theorem is referenced by: atlatmstc 37070 atlatle 37071 pmapssbaN 37511 pmaple 37512 polsubN 37658 2polvalN 37665 2polssN 37666 3polN 37667 2pmaplubN 37677 paddunN 37678 poldmj1N 37679 pnonsingN 37684 ispsubcl2N 37698 psubclinN 37699 paddatclN 37700 polsubclN 37703 poml4N 37704 |
Copyright terms: Public domain | W3C validator |