Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version |
Description: The set of atoms is a subset of the base set. (atssch 30814 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atombase.b | ⊢ 𝐵 = (Base‘𝐾) |
atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atssbase | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atbase 37507 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
4 | 3 | ssriv 3935 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ⊆ wss 3897 ‘cfv 6465 Basecbs 16982 Atomscatm 37481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-iota 6417 df-fun 6467 df-fv 6473 df-ats 37485 |
This theorem is referenced by: atlatmstc 37537 atlatle 37538 pmapssbaN 37979 pmaple 37980 polsubN 38126 2polvalN 38133 2polssN 38134 3polN 38135 2pmaplubN 38145 paddunN 38146 poldmj1N 38147 pnonsingN 38152 ispsubcl2N 38166 psubclinN 38167 paddatclN 38168 polsubclN 38171 poml4N 38172 |
Copyright terms: Public domain | W3C validator |