| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version | ||
| Description: The set of atoms is a subset of the base set. (atssch 32325 analog.) (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| atombase.b | ⊢ 𝐵 = (Base‘𝐾) |
| atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atssbase | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atbase 39408 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 4 | 3 | ssriv 3934 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3898 ‘cfv 6486 Basecbs 17122 Atomscatm 39382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ats 39386 |
| This theorem is referenced by: atlatmstc 39438 atlatle 39439 pmapssbaN 39879 pmaple 39880 polsubN 40026 2polvalN 40033 2polssN 40034 3polN 40035 2pmaplubN 40045 paddunN 40046 poldmj1N 40047 pnonsingN 40052 ispsubcl2N 40066 psubclinN 40067 paddatclN 40068 polsubclN 40071 poml4N 40072 |
| Copyright terms: Public domain | W3C validator |