| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version | ||
| Description: The set of atoms is a subset of the base set. (atssch 32318 analog.) (Contributed by NM, 21-Oct-2011.) |
| Ref | Expression |
|---|---|
| atombase.b | ⊢ 𝐵 = (Base‘𝐾) |
| atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| Ref | Expression |
|---|---|
| atssbase | ⊢ 𝐴 ⊆ 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 3 | 1, 2 | atbase 39327 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
| 4 | 3 | ssriv 3938 | 1 ⊢ 𝐴 ⊆ 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊆ wss 3902 ‘cfv 6481 Basecbs 17117 Atomscatm 39301 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-ats 39305 |
| This theorem is referenced by: atlatmstc 39357 atlatle 39358 pmapssbaN 39798 pmaple 39799 polsubN 39945 2polvalN 39952 2polssN 39953 3polN 39954 2pmaplubN 39964 paddunN 39965 poldmj1N 39966 pnonsingN 39971 ispsubcl2N 39985 psubclinN 39986 paddatclN 39987 polsubclN 39990 poml4N 39991 |
| Copyright terms: Public domain | W3C validator |