Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atssbase Structured version   Visualization version   GIF version

Theorem atssbase 39328
Description: The set of atoms is a subset of the base set. (atssch 32318 analog.) (Contributed by NM, 21-Oct-2011.)
Hypotheses
Ref Expression
atombase.b 𝐵 = (Base‘𝐾)
atombase.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atssbase 𝐴𝐵

Proof of Theorem atssbase
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 atombase.b . . 3 𝐵 = (Base‘𝐾)
2 atombase.a . . 3 𝐴 = (Atoms‘𝐾)
31, 2atbase 39327 . 2 (𝑥𝐴𝑥𝐵)
43ssriv 3938 1 𝐴𝐵
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3902  cfv 6481  Basecbs 17117  Atomscatm 39301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-ats 39305
This theorem is referenced by:  atlatmstc  39357  atlatle  39358  pmapssbaN  39798  pmaple  39799  polsubN  39945  2polvalN  39952  2polssN  39953  3polN  39954  2pmaplubN  39964  paddunN  39965  poldmj1N  39966  pnonsingN  39971  ispsubcl2N  39985  psubclinN  39986  paddatclN  39987  polsubclN  39990  poml4N  39991
  Copyright terms: Public domain W3C validator