![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > atssbase | Structured version Visualization version GIF version |
Description: The set of atoms is a subset of the base set. (atssch 32375 analog.) (Contributed by NM, 21-Oct-2011.) |
Ref | Expression |
---|---|
atombase.b | ⊢ 𝐵 = (Base‘𝐾) |
atombase.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
atssbase | ⊢ 𝐴 ⊆ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | atombase.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | atombase.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
3 | 1, 2 | atbase 39245 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵) |
4 | 3 | ssriv 4012 | 1 ⊢ 𝐴 ⊆ 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊆ wss 3976 ‘cfv 6573 Basecbs 17258 Atomscatm 39219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ats 39223 |
This theorem is referenced by: atlatmstc 39275 atlatle 39276 pmapssbaN 39717 pmaple 39718 polsubN 39864 2polvalN 39871 2polssN 39872 3polN 39873 2pmaplubN 39883 paddunN 39884 poldmj1N 39885 pnonsingN 39890 ispsubcl2N 39904 psubclinN 39905 paddatclN 39906 polsubclN 39909 poml4N 39910 |
Copyright terms: Public domain | W3C validator |