Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1hegrlfgr Structured version   Visualization version   GIF version

Theorem 1hegrlfgr 47082
Description: A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
1hegrlfgr.a (𝜑𝐴𝑋)
1hegrlfgr.b (𝜑𝐵𝑉)
1hegrlfgr.c (𝜑𝐶𝑉)
1hegrlfgr.n (𝜑𝐵𝐶)
1hegrlfgr.x (𝜑𝐸 ∈ 𝒫 𝑉)
1hegrlfgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hegrlfgr.e (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
Assertion
Ref Expression
1hegrlfgr (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
Distinct variable groups:   𝑥,𝐸   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐺(𝑥)   𝑋(𝑥)

Proof of Theorem 1hegrlfgr
StepHypRef Expression
1 1hegrlfgr.a . . . . 5 (𝜑𝐴𝑋)
2 1hegrlfgr.x . . . . 5 (𝜑𝐸 ∈ 𝒫 𝑉)
3 f1osng 6868 . . . . 5 ((𝐴𝑋𝐸 ∈ 𝒫 𝑉) → {⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸})
41, 2, 3syl2anc 583 . . . 4 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸})
5 f1of 6827 . . . 4 ({⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸} → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝐸})
64, 5syl 17 . . 3 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝐸})
7 1hegrlfgr.e . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
8 1hegrlfgr.b . . . . . . . 8 (𝜑𝐵𝑉)
9 prid1g 4759 . . . . . . . 8 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
108, 9syl 17 . . . . . . 7 (𝜑𝐵 ∈ {𝐵, 𝐶})
117, 10sseldd 3978 . . . . . 6 (𝜑𝐵𝐸)
12 1hegrlfgr.c . . . . . . . 8 (𝜑𝐶𝑉)
13 prid2g 4760 . . . . . . . 8 (𝐶𝑉𝐶 ∈ {𝐵, 𝐶})
1412, 13syl 17 . . . . . . 7 (𝜑𝐶 ∈ {𝐵, 𝐶})
157, 14sseldd 3978 . . . . . 6 (𝜑𝐶𝐸)
16 1hegrlfgr.n . . . . . 6 (𝜑𝐵𝐶)
172, 11, 15, 16nehash2 14441 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐸))
18 fveq2 6885 . . . . . . 7 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
1918breq2d 5153 . . . . . 6 (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸)))
2019elrab 3678 . . . . 5 (𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ (𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝐸)))
212, 17, 20sylanbrc 582 . . . 4 (𝜑𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
2221snssd 4807 . . 3 (𝜑 → {𝐸} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
236, 22fssd 6729 . 2 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
24 1hegrlfgr.i . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
2524feq1d 6696 . 2 (𝜑 → ((iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
2623, 25mpbird 257 1 (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  wne 2934  {crab 3426  wss 3943  𝒫 cpw 4597  {csn 4623  {cpr 4625  cop 4629   class class class wbr 5141  wf 6533  1-1-ontowf1o 6536  cfv 6537  cle 11253  2c2 12271  chash 14295  iEdgciedg 28765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-oadd 8471  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-dju 9898  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-2 12279  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-hash 14296
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator