| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1hegrlfgr | Structured version Visualization version GIF version | ||
| Description: A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| 1hegrlfgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1hegrlfgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 1hegrlfgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 1hegrlfgr.n | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 1hegrlfgr.x | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
| 1hegrlfgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
| 1hegrlfgr.e | ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| 1hegrlfgr | ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hegrlfgr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | 1hegrlfgr.x | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
| 3 | f1osng 6809 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝒫 𝑉) → {〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸}) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸}) |
| 5 | f1of 6768 | . . . 4 ⊢ ({〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸} → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝐸}) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝐸}) |
| 7 | 1hegrlfgr.e | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) | |
| 8 | 1hegrlfgr.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 9 | prid1g 4714 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐶}) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
| 11 | 7, 10 | sseldd 3938 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
| 12 | 1hegrlfgr.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 13 | prid2g 4715 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ {𝐵, 𝐶}) | |
| 14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
| 15 | 7, 14 | sseldd 3938 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
| 16 | 1hegrlfgr.n | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 17 | 2, 11, 15, 16 | nehash2 14399 | . . . . 5 ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) |
| 18 | fveq2 6826 | . . . . . . 7 ⊢ (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸)) | |
| 19 | 18 | breq2d 5107 | . . . . . 6 ⊢ (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸))) |
| 20 | 19 | elrab 3650 | . . . . 5 ⊢ (𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ (𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝐸))) |
| 21 | 2, 17, 20 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| 22 | 21 | snssd 4763 | . . 3 ⊢ (𝜑 → {𝐸} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| 23 | 6, 22 | fssd 6673 | . 2 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| 24 | 1hegrlfgr.i | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
| 25 | 24 | feq1d 6638 | . 2 ⊢ (𝜑 → ((iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ {〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) |
| 26 | 23, 25 | mpbird 257 | 1 ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 {crab 3396 ⊆ wss 3905 𝒫 cpw 4553 {csn 4579 {cpr 4581 〈cop 4585 class class class wbr 5095 ⟶wf 6482 –1-1-onto→wf1o 6485 ‘cfv 6486 ≤ cle 11169 2c2 12201 ♯chash 14255 iEdgciedg 28960 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |