Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1hegrlfgr Structured version   Visualization version   GIF version

Theorem 1hegrlfgr 44303
 Description: A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
1hegrlfgr.a (𝜑𝐴𝑋)
1hegrlfgr.b (𝜑𝐵𝑉)
1hegrlfgr.c (𝜑𝐶𝑉)
1hegrlfgr.n (𝜑𝐵𝐶)
1hegrlfgr.x (𝜑𝐸 ∈ 𝒫 𝑉)
1hegrlfgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hegrlfgr.e (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
Assertion
Ref Expression
1hegrlfgr (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
Distinct variable groups:   𝑥,𝐸   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐺(𝑥)   𝑋(𝑥)

Proof of Theorem 1hegrlfgr
StepHypRef Expression
1 1hegrlfgr.a . . . . 5 (𝜑𝐴𝑋)
2 1hegrlfgr.x . . . . 5 (𝜑𝐸 ∈ 𝒫 𝑉)
3 f1osng 6637 . . . . 5 ((𝐴𝑋𝐸 ∈ 𝒫 𝑉) → {⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸})
41, 2, 3syl2anc 587 . . . 4 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸})
5 f1of 6597 . . . 4 ({⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸} → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝐸})
64, 5syl 17 . . 3 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝐸})
7 1hegrlfgr.e . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
8 1hegrlfgr.b . . . . . . . 8 (𝜑𝐵𝑉)
9 prid1g 4670 . . . . . . . 8 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
108, 9syl 17 . . . . . . 7 (𝜑𝐵 ∈ {𝐵, 𝐶})
117, 10sseldd 3943 . . . . . 6 (𝜑𝐵𝐸)
12 1hegrlfgr.c . . . . . . . 8 (𝜑𝐶𝑉)
13 prid2g 4671 . . . . . . . 8 (𝐶𝑉𝐶 ∈ {𝐵, 𝐶})
1412, 13syl 17 . . . . . . 7 (𝜑𝐶 ∈ {𝐵, 𝐶})
157, 14sseldd 3943 . . . . . 6 (𝜑𝐶𝐸)
16 1hegrlfgr.n . . . . . 6 (𝜑𝐵𝐶)
172, 11, 15, 16nehash2 13828 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐸))
18 fveq2 6652 . . . . . . 7 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
1918breq2d 5054 . . . . . 6 (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸)))
2019elrab 3655 . . . . 5 (𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ (𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝐸)))
212, 17, 20sylanbrc 586 . . . 4 (𝜑𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
2221snssd 4715 . . 3 (𝜑 → {𝐸} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
236, 22fssd 6509 . 2 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
24 1hegrlfgr.i . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
2524feq1d 6479 . 2 (𝜑 → ((iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
2623, 25mpbird 260 1 (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2114   ≠ wne 3011  {crab 3134   ⊆ wss 3908  𝒫 cpw 4511  {csn 4539  {cpr 4541  ⟨cop 4545   class class class wbr 5042  ⟶wf 6330  –1-1-onto→wf1o 6333  ‘cfv 6334   ≤ cle 10665  2c2 11680  ♯chash 13686  iEdgciedg 26788 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-dju 9318  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator