Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1hegrlfgr | Structured version Visualization version GIF version |
Description: A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
1hegrlfgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1hegrlfgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
1hegrlfgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
1hegrlfgr.n | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
1hegrlfgr.x | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
1hegrlfgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
1hegrlfgr.e | ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) |
Ref | Expression |
---|---|
1hegrlfgr | ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hegrlfgr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | 1hegrlfgr.x | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
3 | f1osng 6757 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝒫 𝑉) → {〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸}) | |
4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸}) |
5 | f1of 6716 | . . . 4 ⊢ ({〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸} → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝐸}) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝐸}) |
7 | 1hegrlfgr.e | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) | |
8 | 1hegrlfgr.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
9 | prid1g 4696 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐶}) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
11 | 7, 10 | sseldd 3922 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
12 | 1hegrlfgr.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
13 | prid2g 4697 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ {𝐵, 𝐶}) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
15 | 7, 14 | sseldd 3922 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
16 | 1hegrlfgr.n | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
17 | 2, 11, 15, 16 | nehash2 14188 | . . . . 5 ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) |
18 | fveq2 6774 | . . . . . . 7 ⊢ (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸)) | |
19 | 18 | breq2d 5086 | . . . . . 6 ⊢ (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸))) |
20 | 19 | elrab 3624 | . . . . 5 ⊢ (𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ (𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝐸))) |
21 | 2, 17, 20 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
22 | 21 | snssd 4742 | . . 3 ⊢ (𝜑 → {𝐸} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
23 | 6, 22 | fssd 6618 | . 2 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
24 | 1hegrlfgr.i | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
25 | 24 | feq1d 6585 | . 2 ⊢ (𝜑 → ((iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ {〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) |
26 | 23, 25 | mpbird 256 | 1 ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 {crab 3068 ⊆ wss 3887 𝒫 cpw 4533 {csn 4561 {cpr 4563 〈cop 4567 class class class wbr 5074 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 ≤ cle 11010 2c2 12028 ♯chash 14044 iEdgciedg 27367 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |