| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1hegrlfgr | Structured version Visualization version GIF version | ||
| Description: A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.) |
| Ref | Expression |
|---|---|
| 1hegrlfgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| 1hegrlfgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| 1hegrlfgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| 1hegrlfgr.n | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 1hegrlfgr.x | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
| 1hegrlfgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
| 1hegrlfgr.e | ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) |
| Ref | Expression |
|---|---|
| 1hegrlfgr | ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1hegrlfgr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 2 | 1hegrlfgr.x | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
| 3 | f1osng 6804 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝒫 𝑉) → {〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸}) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸}) |
| 5 | f1of 6763 | . . . 4 ⊢ ({〈𝐴, 𝐸〉}:{𝐴}–1-1-onto→{𝐸} → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝐸}) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝐸}) |
| 7 | 1hegrlfgr.e | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) | |
| 8 | 1hegrlfgr.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 9 | prid1g 4713 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐶}) | |
| 10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
| 11 | 7, 10 | sseldd 3935 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
| 12 | 1hegrlfgr.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 13 | prid2g 4714 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ {𝐵, 𝐶}) | |
| 14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
| 15 | 7, 14 | sseldd 3935 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
| 16 | 1hegrlfgr.n | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
| 17 | 2, 11, 15, 16 | nehash2 14381 | . . . . 5 ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) |
| 18 | fveq2 6822 | . . . . . . 7 ⊢ (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸)) | |
| 19 | 18 | breq2d 5103 | . . . . . 6 ⊢ (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸))) |
| 20 | 19 | elrab 3647 | . . . . 5 ⊢ (𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ (𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝐸))) |
| 21 | 2, 17, 20 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| 22 | 21 | snssd 4761 | . . 3 ⊢ (𝜑 → {𝐸} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| 23 | 6, 22 | fssd 6668 | . 2 ⊢ (𝜑 → {〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| 24 | 1hegrlfgr.i | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
| 25 | 24 | feq1d 6633 | . 2 ⊢ (𝜑 → ((iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ {〈𝐴, 𝐸〉}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) |
| 26 | 23, 25 | mpbird 257 | 1 ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 {crab 3395 ⊆ wss 3902 𝒫 cpw 4550 {csn 4576 {cpr 4578 〈cop 4582 class class class wbr 5091 ⟶wf 6477 –1-1-onto→wf1o 6480 ‘cfv 6481 ≤ cle 11147 2c2 12180 ♯chash 14237 iEdgciedg 28976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |