Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1hegrlfgr Structured version   Visualization version   GIF version

Theorem 1hegrlfgr 45261
Description: A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
1hegrlfgr.a (𝜑𝐴𝑋)
1hegrlfgr.b (𝜑𝐵𝑉)
1hegrlfgr.c (𝜑𝐶𝑉)
1hegrlfgr.n (𝜑𝐵𝐶)
1hegrlfgr.x (𝜑𝐸 ∈ 𝒫 𝑉)
1hegrlfgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hegrlfgr.e (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
Assertion
Ref Expression
1hegrlfgr (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
Distinct variable groups:   𝑥,𝐸   𝑥,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑥)   𝐺(𝑥)   𝑋(𝑥)

Proof of Theorem 1hegrlfgr
StepHypRef Expression
1 1hegrlfgr.a . . . . 5 (𝜑𝐴𝑋)
2 1hegrlfgr.x . . . . 5 (𝜑𝐸 ∈ 𝒫 𝑉)
3 f1osng 6759 . . . . 5 ((𝐴𝑋𝐸 ∈ 𝒫 𝑉) → {⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸})
41, 2, 3syl2anc 584 . . . 4 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸})
5 f1of 6718 . . . 4 ({⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸} → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝐸})
64, 5syl 17 . . 3 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝐸})
7 1hegrlfgr.e . . . . . . 7 (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
8 1hegrlfgr.b . . . . . . . 8 (𝜑𝐵𝑉)
9 prid1g 4698 . . . . . . . 8 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
108, 9syl 17 . . . . . . 7 (𝜑𝐵 ∈ {𝐵, 𝐶})
117, 10sseldd 3923 . . . . . 6 (𝜑𝐵𝐸)
12 1hegrlfgr.c . . . . . . . 8 (𝜑𝐶𝑉)
13 prid2g 4699 . . . . . . . 8 (𝐶𝑉𝐶 ∈ {𝐵, 𝐶})
1412, 13syl 17 . . . . . . 7 (𝜑𝐶 ∈ {𝐵, 𝐶})
157, 14sseldd 3923 . . . . . 6 (𝜑𝐶𝐸)
16 1hegrlfgr.n . . . . . 6 (𝜑𝐵𝐶)
172, 11, 15, 16nehash2 14186 . . . . 5 (𝜑 → 2 ≤ (♯‘𝐸))
18 fveq2 6776 . . . . . . 7 (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸))
1918breq2d 5088 . . . . . 6 (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸)))
2019elrab 3625 . . . . 5 (𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ (𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝐸)))
212, 17, 20sylanbrc 583 . . . 4 (𝜑𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
2221snssd 4744 . . 3 (𝜑 → {𝐸} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
236, 22fssd 6620 . 2 (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
24 1hegrlfgr.i . . 3 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
2524feq1d 6587 . 2 (𝜑 → ((iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}))
2623, 25mpbird 256 1 (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  {crab 3068  wss 3888  𝒫 cpw 4535  {csn 4563  {cpr 4565  cop 4569   class class class wbr 5076  wf 6431  1-1-ontowf1o 6434  cfv 6435  cle 11008  2c2 12026  chash 14042  iEdgciedg 27365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-oadd 8299  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-dju 9657  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-n0 12232  df-xnn0 12304  df-z 12318  df-uz 12581  df-fz 13238  df-hash 14043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator