![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1hegrlfgr | Structured version Visualization version GIF version |
Description: A graph 𝐺 with one hyperedge joining at least two vertices is a loop-free graph. (Contributed by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
1hegrlfgr.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1hegrlfgr.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
1hegrlfgr.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
1hegrlfgr.n | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
1hegrlfgr.x | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
1hegrlfgr.i | ⊢ (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩}) |
1hegrlfgr.e | ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) |
Ref | Expression |
---|---|
1hegrlfgr | ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hegrlfgr.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
2 | 1hegrlfgr.x | . . . . 5 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
3 | f1osng 6875 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐸 ∈ 𝒫 𝑉) → {⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸}) | |
4 | 1, 2, 3 | syl2anc 585 | . . . 4 ⊢ (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸}) |
5 | f1of 6834 | . . . 4 ⊢ ({⟨𝐴, 𝐸⟩}:{𝐴}–1-1-onto→{𝐸} → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝐸}) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝐸}) |
7 | 1hegrlfgr.e | . . . . . . 7 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) | |
8 | 1hegrlfgr.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
9 | prid1g 4765 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐶}) | |
10 | 8, 9 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
11 | 7, 10 | sseldd 3984 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
12 | 1hegrlfgr.c | . . . . . . . 8 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
13 | prid2g 4766 | . . . . . . . 8 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ {𝐵, 𝐶}) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
15 | 7, 14 | sseldd 3984 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
16 | 1hegrlfgr.n | . . . . . 6 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
17 | 2, 11, 15, 16 | nehash2 14435 | . . . . 5 ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) |
18 | fveq2 6892 | . . . . . . 7 ⊢ (𝑥 = 𝐸 → (♯‘𝑥) = (♯‘𝐸)) | |
19 | 18 | breq2d 5161 | . . . . . 6 ⊢ (𝑥 = 𝐸 → (2 ≤ (♯‘𝑥) ↔ 2 ≤ (♯‘𝐸))) |
20 | 19 | elrab 3684 | . . . . 5 ⊢ (𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ (𝐸 ∈ 𝒫 𝑉 ∧ 2 ≤ (♯‘𝐸))) |
21 | 2, 17, 20 | sylanbrc 584 | . . . 4 ⊢ (𝜑 → 𝐸 ∈ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
22 | 21 | snssd 4813 | . . 3 ⊢ (𝜑 → {𝐸} ⊆ {𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
23 | 6, 22 | fssd 6736 | . 2 ⊢ (𝜑 → {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
24 | 1hegrlfgr.i | . . 3 ⊢ (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩}) | |
25 | 24 | feq1d 6703 | . 2 ⊢ (𝜑 → ((iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)} ↔ {⟨𝐴, 𝐸⟩}:{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)})) |
26 | 23, 25 | mpbird 257 | 1 ⊢ (𝜑 → (iEdg‘𝐺):{𝐴}⟶{𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ (♯‘𝑥)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 {crab 3433 ⊆ wss 3949 𝒫 cpw 4603 {csn 4629 {cpr 4631 ⟨cop 4635 class class class wbr 5149 ⟶wf 6540 –1-1-onto→wf1o 6543 ‘cfv 6544 ≤ cle 11249 2c2 12267 ♯chash 14290 iEdgciedg 28257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-oadd 8470 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-dju 9896 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |