| Step | Hyp | Ref
| Expression |
| 1 | | ppttop 22980 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ (TopOn‘𝐴)) |
| 2 | | topontop 22886 |
. . . 4
⊢ ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ (TopOn‘𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top) |
| 3 | 1, 2 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top) |
| 4 | | eleq2 2822 |
. . . . . . 7
⊢ (𝑦 = {𝑥, 𝑃} → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ {𝑥, 𝑃})) |
| 5 | | eqeq1 2738 |
. . . . . . 7
⊢ (𝑦 = {𝑥, 𝑃} → (𝑦 = ∅ ↔ {𝑥, 𝑃} = ∅)) |
| 6 | 4, 5 | orbi12d 918 |
. . . . . 6
⊢ (𝑦 = {𝑥, 𝑃} → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅))) |
| 7 | | simpr 484 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 8 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
| 9 | 7, 8 | prssd 4804 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ⊆ 𝐴) |
| 10 | | prex 5419 |
. . . . . . . 8
⊢ {𝑥, 𝑃} ∈ V |
| 11 | 10 | elpw 4586 |
. . . . . . 7
⊢ ({𝑥, 𝑃} ∈ 𝒫 𝐴 ↔ {𝑥, 𝑃} ⊆ 𝐴) |
| 12 | 9, 11 | sylibr 234 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ∈ 𝒫 𝐴) |
| 13 | | prid2g 4743 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ {𝑥, 𝑃}) |
| 14 | 13 | ad2antlr 727 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑃 ∈ {𝑥, 𝑃}) |
| 15 | 14 | orcd 873 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅)) |
| 16 | 6, 12, 15 | elrabd 3678 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
| 17 | 16 | fmpttd 7116 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}):𝐴⟶{𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
| 18 | 17 | frnd 6725 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
| 19 | | eleq2 2822 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑧)) |
| 20 | | eqeq1 2738 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 = ∅ ↔ 𝑧 = ∅)) |
| 21 | 19, 20 | orbi12d 918 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) |
| 22 | 21 | elrab 3676 |
. . . . 5
⊢ (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) |
| 23 | | elpwi 4589 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝒫 𝐴 → 𝑧 ⊆ 𝐴) |
| 24 | 23 | ad2antrl 728 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) → 𝑧 ⊆ 𝐴) |
| 25 | 24 | sselda 3965 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ 𝐴) |
| 26 | | prid1g 4742 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑧 → 𝑤 ∈ {𝑤, 𝑃}) |
| 27 | 26 | adantl 481 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ {𝑤, 𝑃}) |
| 28 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ 𝑧) |
| 29 | | n0i 4322 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑧 → ¬ 𝑧 = ∅) |
| 30 | 29 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ¬ 𝑧 = ∅) |
| 31 | | simplrr 777 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)) |
| 32 | 31 | ord 864 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → (¬ 𝑃 ∈ 𝑧 → 𝑧 = ∅)) |
| 33 | 30, 32 | mt3d 148 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑃 ∈ 𝑧) |
| 34 | 28, 33 | prssd 4804 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → {𝑤, 𝑃} ⊆ 𝑧) |
| 35 | | preq1 4715 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → {𝑥, 𝑃} = {𝑤, 𝑃}) |
| 36 | 35 | eleq2d 2819 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑤 ∈ {𝑥, 𝑃} ↔ 𝑤 ∈ {𝑤, 𝑃})) |
| 37 | 35 | sseq1d 3997 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ({𝑥, 𝑃} ⊆ 𝑧 ↔ {𝑤, 𝑃} ⊆ 𝑧)) |
| 38 | 36, 37 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧) ↔ (𝑤 ∈ {𝑤, 𝑃} ∧ {𝑤, 𝑃} ⊆ 𝑧))) |
| 39 | 38 | rspcev 3606 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐴 ∧ (𝑤 ∈ {𝑤, 𝑃} ∧ {𝑤, 𝑃} ⊆ 𝑧)) → ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
| 40 | 25, 27, 34, 39 | syl12anc 836 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
| 41 | 10 | rgenw 3054 |
. . . . . . . . 9
⊢
∀𝑥 ∈
𝐴 {𝑥, 𝑃} ∈ V |
| 42 | | eqid 2734 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) = (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) |
| 43 | | eleq2 2822 |
. . . . . . . . . . 11
⊢ (𝑣 = {𝑥, 𝑃} → (𝑤 ∈ 𝑣 ↔ 𝑤 ∈ {𝑥, 𝑃})) |
| 44 | | sseq1 3991 |
. . . . . . . . . . 11
⊢ (𝑣 = {𝑥, 𝑃} → (𝑣 ⊆ 𝑧 ↔ {𝑥, 𝑃} ⊆ 𝑧)) |
| 45 | 43, 44 | anbi12d 632 |
. . . . . . . . . 10
⊢ (𝑣 = {𝑥, 𝑃} → ((𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))) |
| 46 | 42, 45 | rexrnmptw 7096 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 {𝑥, 𝑃} ∈ V → (∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))) |
| 47 | 41, 46 | ax-mp 5 |
. . . . . . . 8
⊢
(∃𝑣 ∈ ran
(𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
| 48 | 40, 47 | sylibr 234 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
| 49 | 48 | ralrimiva 3133 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
| 50 | 49 | ex 412 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)) → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧))) |
| 51 | 22, 50 | biimtrid 242 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧))) |
| 52 | 51 | ralrimiv 3132 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
| 53 | | basgen2 22962 |
. . 3
⊢ (({𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top ∧ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∧ ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) → (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
| 54 | 3, 18, 52, 53 | syl3anc 1372 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
| 55 | | eleq2 2822 |
. . . 4
⊢ (𝑦 = 𝑥 → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑥)) |
| 56 | | eqeq1 2738 |
. . . 4
⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) |
| 57 | 55, 56 | orbi12d 918 |
. . 3
⊢ (𝑦 = 𝑥 → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) |
| 58 | 57 | cbvrabv 3431 |
. 2
⊢ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} |
| 59 | 54, 58 | eqtr2di 2786 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} = (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}))) |