MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pptbas Structured version   Visualization version   GIF version

Theorem pptbas 22066
Description: The particular point topology is generated by a basis consisting of pairs {𝑥, 𝑃} for each 𝑥𝐴. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
pptbas ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} = (topGen‘ran (𝑥𝐴 ↦ {𝑥, 𝑃})))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑃   𝑥,𝑉

Proof of Theorem pptbas
Dummy variables 𝑤 𝑣 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ppttop 22065 . . . 4 ((𝐴𝑉𝑃𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} ∈ (TopOn‘𝐴))
2 topontop 21970 . . . 4 ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} ∈ (TopOn‘𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} ∈ Top)
31, 2syl 17 . . 3 ((𝐴𝑉𝑃𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} ∈ Top)
4 eleq2 2827 . . . . . . 7 (𝑦 = {𝑥, 𝑃} → (𝑃𝑦𝑃 ∈ {𝑥, 𝑃}))
5 eqeq1 2742 . . . . . . 7 (𝑦 = {𝑥, 𝑃} → (𝑦 = ∅ ↔ {𝑥, 𝑃} = ∅))
64, 5orbi12d 915 . . . . . 6 (𝑦 = {𝑥, 𝑃} → ((𝑃𝑦𝑦 = ∅) ↔ (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅)))
7 simpr 484 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ 𝑥𝐴) → 𝑥𝐴)
8 simplr 765 . . . . . . . 8 (((𝐴𝑉𝑃𝐴) ∧ 𝑥𝐴) → 𝑃𝐴)
97, 8prssd 4752 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ 𝑥𝐴) → {𝑥, 𝑃} ⊆ 𝐴)
10 prex 5350 . . . . . . . 8 {𝑥, 𝑃} ∈ V
1110elpw 4534 . . . . . . 7 ({𝑥, 𝑃} ∈ 𝒫 𝐴 ↔ {𝑥, 𝑃} ⊆ 𝐴)
129, 11sylibr 233 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ 𝑥𝐴) → {𝑥, 𝑃} ∈ 𝒫 𝐴)
13 prid2g 4694 . . . . . . . 8 (𝑃𝐴𝑃 ∈ {𝑥, 𝑃})
1413ad2antlr 723 . . . . . . 7 (((𝐴𝑉𝑃𝐴) ∧ 𝑥𝐴) → 𝑃 ∈ {𝑥, 𝑃})
1514orcd 869 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ 𝑥𝐴) → (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅))
166, 12, 15elrabd 3619 . . . . 5 (((𝐴𝑉𝑃𝐴) ∧ 𝑥𝐴) → {𝑥, 𝑃} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)})
1716fmpttd 6971 . . . 4 ((𝐴𝑉𝑃𝐴) → (𝑥𝐴 ↦ {𝑥, 𝑃}):𝐴⟶{𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)})
1817frnd 6592 . . 3 ((𝐴𝑉𝑃𝐴) → ran (𝑥𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)})
19 eleq2 2827 . . . . . . 7 (𝑦 = 𝑧 → (𝑃𝑦𝑃𝑧))
20 eqeq1 2742 . . . . . . 7 (𝑦 = 𝑧 → (𝑦 = ∅ ↔ 𝑧 = ∅))
2119, 20orbi12d 915 . . . . . 6 (𝑦 = 𝑧 → ((𝑃𝑦𝑦 = ∅) ↔ (𝑃𝑧𝑧 = ∅)))
2221elrab 3617 . . . . 5 (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)))
23 elpwi 4539 . . . . . . . . . . 11 (𝑧 ∈ 𝒫 𝐴𝑧𝐴)
2423ad2antrl 724 . . . . . . . . . 10 (((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) → 𝑧𝐴)
2524sselda 3917 . . . . . . . . 9 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → 𝑤𝐴)
26 prid1g 4693 . . . . . . . . . 10 (𝑤𝑧𝑤 ∈ {𝑤, 𝑃})
2726adantl 481 . . . . . . . . 9 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → 𝑤 ∈ {𝑤, 𝑃})
28 simpr 484 . . . . . . . . . 10 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → 𝑤𝑧)
29 n0i 4264 . . . . . . . . . . . 12 (𝑤𝑧 → ¬ 𝑧 = ∅)
3029adantl 481 . . . . . . . . . . 11 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → ¬ 𝑧 = ∅)
31 simplrr 774 . . . . . . . . . . . 12 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → (𝑃𝑧𝑧 = ∅))
3231ord 860 . . . . . . . . . . 11 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → (¬ 𝑃𝑧𝑧 = ∅))
3330, 32mt3d 148 . . . . . . . . . 10 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → 𝑃𝑧)
3428, 33prssd 4752 . . . . . . . . 9 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → {𝑤, 𝑃} ⊆ 𝑧)
35 preq1 4666 . . . . . . . . . . . 12 (𝑥 = 𝑤 → {𝑥, 𝑃} = {𝑤, 𝑃})
3635eleq2d 2824 . . . . . . . . . . 11 (𝑥 = 𝑤 → (𝑤 ∈ {𝑥, 𝑃} ↔ 𝑤 ∈ {𝑤, 𝑃}))
3735sseq1d 3948 . . . . . . . . . . 11 (𝑥 = 𝑤 → ({𝑥, 𝑃} ⊆ 𝑧 ↔ {𝑤, 𝑃} ⊆ 𝑧))
3836, 37anbi12d 630 . . . . . . . . . 10 (𝑥 = 𝑤 → ((𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧) ↔ (𝑤 ∈ {𝑤, 𝑃} ∧ {𝑤, 𝑃} ⊆ 𝑧)))
3938rspcev 3552 . . . . . . . . 9 ((𝑤𝐴 ∧ (𝑤 ∈ {𝑤, 𝑃} ∧ {𝑤, 𝑃} ⊆ 𝑧)) → ∃𝑥𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))
4025, 27, 34, 39syl12anc 833 . . . . . . . 8 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → ∃𝑥𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))
4110rgenw 3075 . . . . . . . . 9 𝑥𝐴 {𝑥, 𝑃} ∈ V
42 eqid 2738 . . . . . . . . . 10 (𝑥𝐴 ↦ {𝑥, 𝑃}) = (𝑥𝐴 ↦ {𝑥, 𝑃})
43 eleq2 2827 . . . . . . . . . . 11 (𝑣 = {𝑥, 𝑃} → (𝑤𝑣𝑤 ∈ {𝑥, 𝑃}))
44 sseq1 3942 . . . . . . . . . . 11 (𝑣 = {𝑥, 𝑃} → (𝑣𝑧 ↔ {𝑥, 𝑃} ⊆ 𝑧))
4543, 44anbi12d 630 . . . . . . . . . 10 (𝑣 = {𝑥, 𝑃} → ((𝑤𝑣𝑣𝑧) ↔ (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)))
4642, 45rexrnmptw 6953 . . . . . . . . 9 (∀𝑥𝐴 {𝑥, 𝑃} ∈ V → (∃𝑣 ∈ ran (𝑥𝐴 ↦ {𝑥, 𝑃})(𝑤𝑣𝑣𝑧) ↔ ∃𝑥𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)))
4741, 46ax-mp 5 . . . . . . . 8 (∃𝑣 ∈ ran (𝑥𝐴 ↦ {𝑥, 𝑃})(𝑤𝑣𝑣𝑧) ↔ ∃𝑥𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))
4840, 47sylibr 233 . . . . . . 7 ((((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) ∧ 𝑤𝑧) → ∃𝑣 ∈ ran (𝑥𝐴 ↦ {𝑥, 𝑃})(𝑤𝑣𝑣𝑧))
4948ralrimiva 3107 . . . . . 6 (((𝐴𝑉𝑃𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅))) → ∀𝑤𝑧𝑣 ∈ ran (𝑥𝐴 ↦ {𝑥, 𝑃})(𝑤𝑣𝑣𝑧))
5049ex 412 . . . . 5 ((𝐴𝑉𝑃𝐴) → ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑃𝑧𝑧 = ∅)) → ∀𝑤𝑧𝑣 ∈ ran (𝑥𝐴 ↦ {𝑥, 𝑃})(𝑤𝑣𝑣𝑧)))
5122, 50syl5bi 241 . . . 4 ((𝐴𝑉𝑃𝐴) → (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} → ∀𝑤𝑧𝑣 ∈ ran (𝑥𝐴 ↦ {𝑥, 𝑃})(𝑤𝑣𝑣𝑧)))
5251ralrimiv 3106 . . 3 ((𝐴𝑉𝑃𝐴) → ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)}∀𝑤𝑧𝑣 ∈ ran (𝑥𝐴 ↦ {𝑥, 𝑃})(𝑤𝑣𝑣𝑧))
53 basgen2 22047 . . 3 (({𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} ∈ Top ∧ ran (𝑥𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} ∧ ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)}∀𝑤𝑧𝑣 ∈ ran (𝑥𝐴 ↦ {𝑥, 𝑃})(𝑤𝑣𝑣𝑧)) → (topGen‘ran (𝑥𝐴 ↦ {𝑥, 𝑃})) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)})
543, 18, 52, 53syl3anc 1369 . 2 ((𝐴𝑉𝑃𝐴) → (topGen‘ran (𝑥𝐴 ↦ {𝑥, 𝑃})) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)})
55 eleq2 2827 . . . 4 (𝑦 = 𝑥 → (𝑃𝑦𝑃𝑥))
56 eqeq1 2742 . . . 4 (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅))
5755, 56orbi12d 915 . . 3 (𝑦 = 𝑥 → ((𝑃𝑦𝑦 = ∅) ↔ (𝑃𝑥𝑥 = ∅)))
5857cbvrabv 3416 . 2 {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃𝑦𝑦 = ∅)} = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)}
5954, 58eqtr2di 2796 1 ((𝐴𝑉𝑃𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃𝑥𝑥 = ∅)} = (topGen‘ran (𝑥𝐴 ↦ {𝑥, 𝑃})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  {cpr 4560  cmpt 5153  ran crn 5581  cfv 6418  topGenctg 17065  Topctop 21950  TopOnctopon 21967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-topgen 17071  df-top 21951  df-topon 21968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator