Step | Hyp | Ref
| Expression |
1 | | ppttop 21707 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ (TopOn‘𝐴)) |
2 | | topontop 21613 |
. . . 4
⊢ ({𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ (TopOn‘𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top) |
3 | 1, 2 | syl 17 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top) |
4 | | eleq2 2840 |
. . . . . . 7
⊢ (𝑦 = {𝑥, 𝑃} → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ {𝑥, 𝑃})) |
5 | | eqeq1 2762 |
. . . . . . 7
⊢ (𝑦 = {𝑥, 𝑃} → (𝑦 = ∅ ↔ {𝑥, 𝑃} = ∅)) |
6 | 4, 5 | orbi12d 916 |
. . . . . 6
⊢ (𝑦 = {𝑥, 𝑃} → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅))) |
7 | | simpr 488 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
8 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑃 ∈ 𝐴) |
9 | 7, 8 | prssd 4712 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ⊆ 𝐴) |
10 | | prex 5301 |
. . . . . . . 8
⊢ {𝑥, 𝑃} ∈ V |
11 | 10 | elpw 4498 |
. . . . . . 7
⊢ ({𝑥, 𝑃} ∈ 𝒫 𝐴 ↔ {𝑥, 𝑃} ⊆ 𝐴) |
12 | 9, 11 | sylibr 237 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ∈ 𝒫 𝐴) |
13 | | prid2g 4654 |
. . . . . . . 8
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ {𝑥, 𝑃}) |
14 | 13 | ad2antlr 726 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → 𝑃 ∈ {𝑥, 𝑃}) |
15 | 14 | orcd 870 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → (𝑃 ∈ {𝑥, 𝑃} ∨ {𝑥, 𝑃} = ∅)) |
16 | 6, 12, 15 | elrabd 3604 |
. . . . 5
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ 𝑥 ∈ 𝐴) → {𝑥, 𝑃} ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
17 | 16 | fmpttd 6870 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}):𝐴⟶{𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
18 | 17 | frnd 6505 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
19 | | eleq2 2840 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑧)) |
20 | | eqeq1 2762 |
. . . . . . 7
⊢ (𝑦 = 𝑧 → (𝑦 = ∅ ↔ 𝑧 = ∅)) |
21 | 19, 20 | orbi12d 916 |
. . . . . 6
⊢ (𝑦 = 𝑧 → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) |
22 | 21 | elrab 3602 |
. . . . 5
⊢ (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ↔ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) |
23 | | elpwi 4503 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝒫 𝐴 → 𝑧 ⊆ 𝐴) |
24 | 23 | ad2antrl 727 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) → 𝑧 ⊆ 𝐴) |
25 | 24 | sselda 3892 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ 𝐴) |
26 | | prid1g 4653 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝑧 → 𝑤 ∈ {𝑤, 𝑃}) |
27 | 26 | adantl 485 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ {𝑤, 𝑃}) |
28 | | simpr 488 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑤 ∈ 𝑧) |
29 | | n0i 4232 |
. . . . . . . . . . . 12
⊢ (𝑤 ∈ 𝑧 → ¬ 𝑧 = ∅) |
30 | 29 | adantl 485 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ¬ 𝑧 = ∅) |
31 | | simplrr 777 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)) |
32 | 31 | ord 861 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → (¬ 𝑃 ∈ 𝑧 → 𝑧 = ∅)) |
33 | 30, 32 | mt3d 150 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → 𝑃 ∈ 𝑧) |
34 | 28, 33 | prssd 4712 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → {𝑤, 𝑃} ⊆ 𝑧) |
35 | | preq1 4626 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑤 → {𝑥, 𝑃} = {𝑤, 𝑃}) |
36 | 35 | eleq2d 2837 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → (𝑤 ∈ {𝑥, 𝑃} ↔ 𝑤 ∈ {𝑤, 𝑃})) |
37 | 35 | sseq1d 3923 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑤 → ({𝑥, 𝑃} ⊆ 𝑧 ↔ {𝑤, 𝑃} ⊆ 𝑧)) |
38 | 36, 37 | anbi12d 633 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑤 → ((𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧) ↔ (𝑤 ∈ {𝑤, 𝑃} ∧ {𝑤, 𝑃} ⊆ 𝑧))) |
39 | 38 | rspcev 3541 |
. . . . . . . . 9
⊢ ((𝑤 ∈ 𝐴 ∧ (𝑤 ∈ {𝑤, 𝑃} ∧ {𝑤, 𝑃} ⊆ 𝑧)) → ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
40 | 25, 27, 34, 39 | syl12anc 835 |
. . . . . . . 8
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
41 | 10 | rgenw 3082 |
. . . . . . . . 9
⊢
∀𝑥 ∈
𝐴 {𝑥, 𝑃} ∈ V |
42 | | eqid 2758 |
. . . . . . . . . 10
⊢ (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) = (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) |
43 | | eleq2 2840 |
. . . . . . . . . . 11
⊢ (𝑣 = {𝑥, 𝑃} → (𝑤 ∈ 𝑣 ↔ 𝑤 ∈ {𝑥, 𝑃})) |
44 | | sseq1 3917 |
. . . . . . . . . . 11
⊢ (𝑣 = {𝑥, 𝑃} → (𝑣 ⊆ 𝑧 ↔ {𝑥, 𝑃} ⊆ 𝑧)) |
45 | 43, 44 | anbi12d 633 |
. . . . . . . . . 10
⊢ (𝑣 = {𝑥, 𝑃} → ((𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))) |
46 | 42, 45 | rexrnmptw 6852 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐴 {𝑥, 𝑃} ∈ V → (∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧))) |
47 | 41, 46 | ax-mp 5 |
. . . . . . . 8
⊢
(∃𝑣 ∈ ran
(𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧) ↔ ∃𝑥 ∈ 𝐴 (𝑤 ∈ {𝑥, 𝑃} ∧ {𝑥, 𝑃} ⊆ 𝑧)) |
48 | 40, 47 | sylibr 237 |
. . . . . . 7
⊢ ((((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) ∧ 𝑤 ∈ 𝑧) → ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
49 | 48 | ralrimiva 3113 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) ∧ (𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅))) → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
50 | 49 | ex 416 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ((𝑧 ∈ 𝒫 𝐴 ∧ (𝑃 ∈ 𝑧 ∨ 𝑧 = ∅)) → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧))) |
51 | 22, 50 | syl5bi 245 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} → ∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧))) |
52 | 51 | ralrimiv 3112 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) |
53 | | basgen2 21689 |
. . 3
⊢ (({𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∈ Top ∧ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}) ⊆ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} ∧ ∀𝑧 ∈ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}∀𝑤 ∈ 𝑧 ∃𝑣 ∈ ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})(𝑤 ∈ 𝑣 ∧ 𝑣 ⊆ 𝑧)) → (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
54 | 3, 18, 52, 53 | syl3anc 1368 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃})) = {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)}) |
55 | | eleq2 2840 |
. . . 4
⊢ (𝑦 = 𝑥 → (𝑃 ∈ 𝑦 ↔ 𝑃 ∈ 𝑥)) |
56 | | eqeq1 2762 |
. . . 4
⊢ (𝑦 = 𝑥 → (𝑦 = ∅ ↔ 𝑥 = ∅)) |
57 | 55, 56 | orbi12d 916 |
. . 3
⊢ (𝑦 = 𝑥 → ((𝑃 ∈ 𝑦 ∨ 𝑦 = ∅) ↔ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅))) |
58 | 57 | cbvrabv 3404 |
. 2
⊢ {𝑦 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑦 ∨ 𝑦 = ∅)} = {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} |
59 | 54, 58 | eqtr2di 2810 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝑃 ∈ 𝐴) → {𝑥 ∈ 𝒫 𝐴 ∣ (𝑃 ∈ 𝑥 ∨ 𝑥 = ∅)} = (topGen‘ran (𝑥 ∈ 𝐴 ↦ {𝑥, 𝑃}))) |