MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq0negpitopi Structured version   Visualization version   GIF version

Theorem coseq0negpitopi 26445
Description: Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ (-π(,]π))
2 pire 26399 . . . . . . . 8 π ∈ ℝ
32renegcli 11459 . . . . . . 7 -π ∈ ℝ
43rexri 11208 . . . . . 6 -π ∈ ℝ*
5 elioc2 13346 . . . . . 6 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π)))
64, 2, 5mp2an 692 . . . . 5 (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
71, 6sylib 218 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
87simp1d 1142 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
9 0re 11152 . . . 4 0 ∈ ℝ
109a1i 11 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 0 ∈ ℝ)
118adantr 480 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ)
1211recnd 11178 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
138recnd 11178 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℂ)
1413adantr 480 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
15 cosneg 16091 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
1614, 15syl 17 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘-𝐴) = (cos‘𝐴))
17 simplr 768 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘𝐴) = 0)
1816, 17eqtrd 2764 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘-𝐴) = 0)
198renegcld 11581 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ∈ ℝ)
2019adantr 480 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℝ)
21 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
2211le0neg1d 11725 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
2321, 22mpbid 232 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
242a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
257simp2d 1143 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -π < 𝐴)
2624, 8, 25ltnegcon1d 11734 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 < π)
2719, 24, 26ltled 11298 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ≤ π)
2827adantr 480 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ≤ π)
299, 2elicc2i 13349 . . . . . . . . 9 (-𝐴 ∈ (0[,]π) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴 ∧ -𝐴 ≤ π))
3020, 23, 28, 29syl3anbrc 1344 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ∈ (0[,]π))
31 coseq00topi 26444 . . . . . . . 8 (-𝐴 ∈ (0[,]π) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
3230, 31syl 17 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
3318, 32mpbid 232 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 = (π / 2))
3412, 33negcon1ad 11504 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -(π / 2) = 𝐴)
3534eqcomd 2735 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 = -(π / 2))
36 halfpire 26406 . . . . . 6 (π / 2) ∈ ℝ
3736renegcli 11459 . . . . 5 -(π / 2) ∈ ℝ
38 prid2g 4721 . . . . 5 (-(π / 2) ∈ ℝ → -(π / 2) ∈ {(π / 2), -(π / 2)})
39 eleq1a 2823 . . . . 5 (-(π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
4037, 38, 39mp2b 10 . . . 4 (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
4135, 40syl 17 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
42 simplr 768 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → (cos‘𝐴) = 0)
438adantr 480 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
44 simpr 484 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
457simp3d 1144 . . . . . . . 8 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ≤ π)
4645adantr 480 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ≤ π)
479, 2elicc2i 13349 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
4843, 44, 46, 47syl3anbrc 1344 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]π))
49 coseq00topi 26444 . . . . . 6 (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5048, 49syl 17 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5142, 50mpbid 232 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 = (π / 2))
52 prid1g 4720 . . . . 5 ((π / 2) ∈ ℝ → (π / 2) ∈ {(π / 2), -(π / 2)})
53 eleq1a 2823 . . . . 5 ((π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
5436, 52, 53mp2b 10 . . . 4 (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
5551, 54syl 17 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ {(π / 2), -(π / 2)})
568, 10, 41, 55lecasei 11256 . 2 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
57 elpri 4609 . . . 4 (𝐴 ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)))
58 fveq2 6840 . . . . . 6 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
59 coshalfpi 26411 . . . . . 6 (cos‘(π / 2)) = 0
6058, 59eqtrdi 2780 . . . . 5 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
61 fveq2 6840 . . . . . 6 (𝐴 = -(π / 2) → (cos‘𝐴) = (cos‘-(π / 2)))
62 cosneghalfpi 26412 . . . . . 6 (cos‘-(π / 2)) = 0
6361, 62eqtrdi 2780 . . . . 5 (𝐴 = -(π / 2) → (cos‘𝐴) = 0)
6460, 63jaoi 857 . . . 4 ((𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)) → (cos‘𝐴) = 0)
6557, 64syl 17 . . 3 (𝐴 ∈ {(π / 2), -(π / 2)} → (cos‘𝐴) = 0)
6665adantl 481 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐴 ∈ {(π / 2), -(π / 2)}) → (cos‘𝐴) = 0)
6756, 66impbida 800 1 (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {cpr 4587   class class class wbr 5102  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  *cxr 11183   < clt 11184  cle 11185  -cneg 11382   / cdiv 11811  2c2 12217  (,]cioc 13283  [,]cicc 13285  cosccos 16006  πcpi 16008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801
This theorem is referenced by:  angrteqvd  26749  chordthmlem  26775
  Copyright terms: Public domain W3C validator