MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq0negpitopi Structured version   Visualization version   GIF version

Theorem coseq0negpitopi 26563
Description: Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simpl 482 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ (-π(,]π))
2 pire 26518 . . . . . . . 8 π ∈ ℝ
32renegcli 11597 . . . . . . 7 -π ∈ ℝ
43rexri 11348 . . . . . 6 -π ∈ ℝ*
5 elioc2 13470 . . . . . 6 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π)))
64, 2, 5mp2an 691 . . . . 5 (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
71, 6sylib 218 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
87simp1d 1142 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
9 0re 11292 . . . 4 0 ∈ ℝ
109a1i 11 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 0 ∈ ℝ)
118adantr 480 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ)
1211recnd 11318 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
138recnd 11318 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℂ)
1413adantr 480 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
15 cosneg 16195 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
1614, 15syl 17 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘-𝐴) = (cos‘𝐴))
17 simplr 768 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘𝐴) = 0)
1816, 17eqtrd 2780 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘-𝐴) = 0)
198renegcld 11717 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ∈ ℝ)
2019adantr 480 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℝ)
21 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
2211le0neg1d 11861 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
2321, 22mpbid 232 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
242a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
257simp2d 1143 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -π < 𝐴)
2624, 8, 25ltnegcon1d 11870 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 < π)
2719, 24, 26ltled 11438 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ≤ π)
2827adantr 480 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ≤ π)
299, 2elicc2i 13473 . . . . . . . . 9 (-𝐴 ∈ (0[,]π) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴 ∧ -𝐴 ≤ π))
3020, 23, 28, 29syl3anbrc 1343 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ∈ (0[,]π))
31 coseq00topi 26562 . . . . . . . 8 (-𝐴 ∈ (0[,]π) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
3230, 31syl 17 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
3318, 32mpbid 232 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 = (π / 2))
3412, 33negcon1ad 11642 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -(π / 2) = 𝐴)
3534eqcomd 2746 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 = -(π / 2))
36 halfpire 26524 . . . . . 6 (π / 2) ∈ ℝ
3736renegcli 11597 . . . . 5 -(π / 2) ∈ ℝ
38 prid2g 4786 . . . . 5 (-(π / 2) ∈ ℝ → -(π / 2) ∈ {(π / 2), -(π / 2)})
39 eleq1a 2839 . . . . 5 (-(π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
4037, 38, 39mp2b 10 . . . 4 (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
4135, 40syl 17 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
42 simplr 768 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → (cos‘𝐴) = 0)
438adantr 480 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
44 simpr 484 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
457simp3d 1144 . . . . . . . 8 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ≤ π)
4645adantr 480 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ≤ π)
479, 2elicc2i 13473 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
4843, 44, 46, 47syl3anbrc 1343 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]π))
49 coseq00topi 26562 . . . . . 6 (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5048, 49syl 17 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5142, 50mpbid 232 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 = (π / 2))
52 prid1g 4785 . . . . 5 ((π / 2) ∈ ℝ → (π / 2) ∈ {(π / 2), -(π / 2)})
53 eleq1a 2839 . . . . 5 ((π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
5436, 52, 53mp2b 10 . . . 4 (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
5551, 54syl 17 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ {(π / 2), -(π / 2)})
568, 10, 41, 55lecasei 11396 . 2 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
57 elpri 4671 . . . 4 (𝐴 ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)))
58 fveq2 6920 . . . . . 6 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
59 coshalfpi 26529 . . . . . 6 (cos‘(π / 2)) = 0
6058, 59eqtrdi 2796 . . . . 5 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
61 fveq2 6920 . . . . . 6 (𝐴 = -(π / 2) → (cos‘𝐴) = (cos‘-(π / 2)))
62 cosneghalfpi 26530 . . . . . 6 (cos‘-(π / 2)) = 0
6361, 62eqtrdi 2796 . . . . 5 (𝐴 = -(π / 2) → (cos‘𝐴) = 0)
6460, 63jaoi 856 . . . 4 ((𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)) → (cos‘𝐴) = 0)
6557, 64syl 17 . . 3 (𝐴 ∈ {(π / 2), -(π / 2)} → (cos‘𝐴) = 0)
6665adantl 481 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐴 ∈ {(π / 2), -(π / 2)}) → (cos‘𝐴) = 0)
6756, 66impbida 800 1 (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  {cpr 4650   class class class wbr 5166  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  *cxr 11323   < clt 11324  cle 11325  -cneg 11521   / cdiv 11947  2c2 12348  (,]cioc 13408  [,]cicc 13410  cosccos 16112  πcpi 16114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  angrteqvd  26867  chordthmlem  26893
  Copyright terms: Public domain W3C validator