MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coseq0negpitopi Structured version   Visualization version   GIF version

Theorem coseq0negpitopi 26013
Description: Location of the zeroes of cosine in (-π(,]π). (Contributed by David Moews, 28-Feb-2017.)
Assertion
Ref Expression
coseq0negpitopi (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))

Proof of Theorem coseq0negpitopi
StepHypRef Expression
1 simpl 484 . . . . 5 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ (-π(,]π))
2 pire 25968 . . . . . . . 8 π ∈ ℝ
32renegcli 11521 . . . . . . 7 -π ∈ ℝ
43rexri 11272 . . . . . 6 -π ∈ ℝ*
5 elioc2 13387 . . . . . 6 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π)))
64, 2, 5mp2an 691 . . . . 5 (𝐴 ∈ (-π(,]π) ↔ (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
71, 6sylib 217 . . . 4 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → (𝐴 ∈ ℝ ∧ -π < 𝐴𝐴 ≤ π))
87simp1d 1143 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℝ)
9 0re 11216 . . . 4 0 ∈ ℝ
109a1i 11 . . 3 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 0 ∈ ℝ)
118adantr 482 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ)
1211recnd 11242 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
138recnd 11242 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ ℂ)
1413adantr 482 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ)
15 cosneg 16090 . . . . . . . . 9 (𝐴 ∈ ℂ → (cos‘-𝐴) = (cos‘𝐴))
1614, 15syl 17 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘-𝐴) = (cos‘𝐴))
17 simplr 768 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘𝐴) = 0)
1816, 17eqtrd 2773 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (cos‘-𝐴) = 0)
198renegcld 11641 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ∈ ℝ)
2019adantr 482 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ∈ ℝ)
21 simpr 486 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0)
2211le0neg1d 11785 . . . . . . . . . 10 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
2321, 22mpbid 231 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴)
242a1i 11 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → π ∈ ℝ)
257simp2d 1144 . . . . . . . . . . . 12 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -π < 𝐴)
2624, 8, 25ltnegcon1d 11794 . . . . . . . . . . 11 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 < π)
2719, 24, 26ltled 11362 . . . . . . . . . 10 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → -𝐴 ≤ π)
2827adantr 482 . . . . . . . . 9 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ≤ π)
299, 2elicc2i 13390 . . . . . . . . 9 (-𝐴 ∈ (0[,]π) ↔ (-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴 ∧ -𝐴 ≤ π))
3020, 23, 28, 29syl3anbrc 1344 . . . . . . . 8 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 ∈ (0[,]π))
31 coseq00topi 26012 . . . . . . . 8 (-𝐴 ∈ (0[,]π) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
3230, 31syl 17 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → ((cos‘-𝐴) = 0 ↔ -𝐴 = (π / 2)))
3318, 32mpbid 231 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -𝐴 = (π / 2))
3412, 33negcon1ad 11566 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → -(π / 2) = 𝐴)
3534eqcomd 2739 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 = -(π / 2))
36 halfpire 25974 . . . . . 6 (π / 2) ∈ ℝ
3736renegcli 11521 . . . . 5 -(π / 2) ∈ ℝ
38 prid2g 4766 . . . . 5 (-(π / 2) ∈ ℝ → -(π / 2) ∈ {(π / 2), -(π / 2)})
39 eleq1a 2829 . . . . 5 (-(π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
4037, 38, 39mp2b 10 . . . 4 (𝐴 = -(π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
4135, 40syl 17 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 𝐴 ≤ 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
42 simplr 768 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → (cos‘𝐴) = 0)
438adantr 482 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℝ)
44 simpr 486 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 0 ≤ 𝐴)
457simp3d 1145 . . . . . . . 8 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ≤ π)
4645adantr 482 . . . . . . 7 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ≤ π)
479, 2elicc2i 13390 . . . . . . 7 (𝐴 ∈ (0[,]π) ↔ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴𝐴 ≤ π))
4843, 44, 46, 47syl3anbrc 1344 . . . . . 6 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ (0[,]π))
49 coseq00topi 26012 . . . . . 6 (𝐴 ∈ (0[,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5048, 49syl 17 . . . . 5 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → ((cos‘𝐴) = 0 ↔ 𝐴 = (π / 2)))
5142, 50mpbid 231 . . . 4 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 = (π / 2))
52 prid1g 4765 . . . . 5 ((π / 2) ∈ ℝ → (π / 2) ∈ {(π / 2), -(π / 2)})
53 eleq1a 2829 . . . . 5 ((π / 2) ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)}))
5436, 52, 53mp2b 10 . . . 4 (𝐴 = (π / 2) → 𝐴 ∈ {(π / 2), -(π / 2)})
5551, 54syl 17 . . 3 (((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) ∧ 0 ≤ 𝐴) → 𝐴 ∈ {(π / 2), -(π / 2)})
568, 10, 41, 55lecasei 11320 . 2 ((𝐴 ∈ (-π(,]π) ∧ (cos‘𝐴) = 0) → 𝐴 ∈ {(π / 2), -(π / 2)})
57 elpri 4651 . . . 4 (𝐴 ∈ {(π / 2), -(π / 2)} → (𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)))
58 fveq2 6892 . . . . . 6 (𝐴 = (π / 2) → (cos‘𝐴) = (cos‘(π / 2)))
59 coshalfpi 25979 . . . . . 6 (cos‘(π / 2)) = 0
6058, 59eqtrdi 2789 . . . . 5 (𝐴 = (π / 2) → (cos‘𝐴) = 0)
61 fveq2 6892 . . . . . 6 (𝐴 = -(π / 2) → (cos‘𝐴) = (cos‘-(π / 2)))
62 cosneghalfpi 25980 . . . . . 6 (cos‘-(π / 2)) = 0
6361, 62eqtrdi 2789 . . . . 5 (𝐴 = -(π / 2) → (cos‘𝐴) = 0)
6460, 63jaoi 856 . . . 4 ((𝐴 = (π / 2) ∨ 𝐴 = -(π / 2)) → (cos‘𝐴) = 0)
6557, 64syl 17 . . 3 (𝐴 ∈ {(π / 2), -(π / 2)} → (cos‘𝐴) = 0)
6665adantl 483 . 2 ((𝐴 ∈ (-π(,]π) ∧ 𝐴 ∈ {(π / 2), -(π / 2)}) → (cos‘𝐴) = 0)
6756, 66impbida 800 1 (𝐴 ∈ (-π(,]π) → ((cos‘𝐴) = 0 ↔ 𝐴 ∈ {(π / 2), -(π / 2)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  {cpr 4631   class class class wbr 5149  cfv 6544  (class class class)co 7409  cc 11108  cr 11109  0cc0 11110  *cxr 11247   < clt 11248  cle 11249  -cneg 11445   / cdiv 11871  2c2 12267  (,]cioc 13325  [,]cicc 13327  cosccos 16008  πcpi 16010
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-inf2 9636  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188  ax-addf 11189  ax-mulf 11190
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-2o 8467  df-er 8703  df-map 8822  df-pm 8823  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-fi 9406  df-sup 9437  df-inf 9438  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-q 12933  df-rp 12975  df-xneg 13092  df-xadd 13093  df-xmul 13094  df-ioo 13328  df-ioc 13329  df-ico 13330  df-icc 13331  df-fz 13485  df-fzo 13628  df-fl 13757  df-seq 13967  df-exp 14028  df-fac 14234  df-bc 14263  df-hash 14291  df-shft 15014  df-cj 15046  df-re 15047  df-im 15048  df-sqrt 15182  df-abs 15183  df-limsup 15415  df-clim 15432  df-rlim 15433  df-sum 15633  df-ef 16011  df-sin 16013  df-cos 16014  df-pi 16016  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-starv 17212  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-unif 17220  df-hom 17221  df-cco 17222  df-rest 17368  df-topn 17369  df-0g 17387  df-gsum 17388  df-topgen 17389  df-pt 17390  df-prds 17393  df-xrs 17448  df-qtop 17453  df-imas 17454  df-xps 17456  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-mulg 18951  df-cntz 19181  df-cmn 19650  df-psmet 20936  df-xmet 20937  df-met 20938  df-bl 20939  df-mopn 20940  df-fbas 20941  df-fg 20942  df-cnfld 20945  df-top 22396  df-topon 22413  df-topsp 22435  df-bases 22449  df-cld 22523  df-ntr 22524  df-cls 22525  df-nei 22602  df-lp 22640  df-perf 22641  df-cn 22731  df-cnp 22732  df-haus 22819  df-tx 23066  df-hmeo 23259  df-fil 23350  df-fm 23442  df-flim 23443  df-flf 23444  df-xms 23826  df-ms 23827  df-tms 23828  df-cncf 24394  df-limc 25383  df-dv 25384
This theorem is referenced by:  angrteqvd  26311  chordthmlem  26337
  Copyright terms: Public domain W3C validator