![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1hegrvtxdg1 | Structured version Visualization version GIF version |
Description: The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.) |
Ref | Expression |
---|---|
1hegrvtxdg1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
1hegrvtxdg1.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
1hegrvtxdg1.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
1hegrvtxdg1.n | ⊢ (𝜑 → 𝐵 ≠ 𝐶) |
1hegrvtxdg1.x | ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) |
1hegrvtxdg1.i | ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) |
1hegrvtxdg1.e | ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) |
1hegrvtxdg1.v | ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) |
Ref | Expression |
---|---|
1hegrvtxdg1 | ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1hegrvtxdg1.i | . 2 ⊢ (𝜑 → (iEdg‘𝐺) = {〈𝐴, 𝐸〉}) | |
2 | 1hegrvtxdg1.v | . 2 ⊢ (𝜑 → (Vtx‘𝐺) = 𝑉) | |
3 | 1hegrvtxdg1.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
4 | 1hegrvtxdg1.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
5 | 1hegrvtxdg1.x | . 2 ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑉) | |
6 | 1hegrvtxdg1.e | . . 3 ⊢ (𝜑 → {𝐵, 𝐶} ⊆ 𝐸) | |
7 | prid1g 4765 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵, 𝐶}) | |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝐵 ∈ {𝐵, 𝐶}) |
9 | 6, 8 | sseldd 3996 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
10 | 1hegrvtxdg1.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
11 | prid2g 4766 | . . . . 5 ⊢ (𝐶 ∈ 𝑉 → 𝐶 ∈ {𝐵, 𝐶}) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ {𝐵, 𝐶}) |
13 | 6, 12 | sseldd 3996 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝐸) |
14 | 1hegrvtxdg1.n | . . 3 ⊢ (𝜑 → 𝐵 ≠ 𝐶) | |
15 | 5, 9, 13, 14 | nehash2 14510 | . 2 ⊢ (𝜑 → 2 ≤ (♯‘𝐸)) |
16 | 1, 2, 3, 4, 5, 9, 15 | 1hevtxdg1 29539 | 1 ⊢ (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ⊆ wss 3963 𝒫 cpw 4605 {csn 4631 {cpr 4633 〈cop 4637 ‘cfv 6563 1c1 11154 Vtxcvtx 29028 iEdgciedg 29029 VtxDegcvtxdg 29498 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-xadd 13153 df-fz 13545 df-hash 14367 df-vtxdg 29499 |
This theorem is referenced by: 1hegrvtxdg1r 29541 eupth2lem3lem4 30260 |
Copyright terms: Public domain | W3C validator |