MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hegrvtxdg1 Structured version   Visualization version   GIF version

Theorem 1hegrvtxdg1 29540
Description: The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
1hegrvtxdg1.a (𝜑𝐴𝑋)
1hegrvtxdg1.b (𝜑𝐵𝑉)
1hegrvtxdg1.c (𝜑𝐶𝑉)
1hegrvtxdg1.n (𝜑𝐵𝐶)
1hegrvtxdg1.x (𝜑𝐸 ∈ 𝒫 𝑉)
1hegrvtxdg1.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hegrvtxdg1.e (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
1hegrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
Assertion
Ref Expression
1hegrvtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)

Proof of Theorem 1hegrvtxdg1
StepHypRef Expression
1 1hegrvtxdg1.i . 2 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
2 1hegrvtxdg1.v . 2 (𝜑 → (Vtx‘𝐺) = 𝑉)
3 1hegrvtxdg1.a . 2 (𝜑𝐴𝑋)
4 1hegrvtxdg1.b . 2 (𝜑𝐵𝑉)
5 1hegrvtxdg1.x . 2 (𝜑𝐸 ∈ 𝒫 𝑉)
6 1hegrvtxdg1.e . . 3 (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
7 prid1g 4765 . . . 4 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
84, 7syl 17 . . 3 (𝜑𝐵 ∈ {𝐵, 𝐶})
96, 8sseldd 3996 . 2 (𝜑𝐵𝐸)
10 1hegrvtxdg1.c . . . . 5 (𝜑𝐶𝑉)
11 prid2g 4766 . . . . 5 (𝐶𝑉𝐶 ∈ {𝐵, 𝐶})
1210, 11syl 17 . . . 4 (𝜑𝐶 ∈ {𝐵, 𝐶})
136, 12sseldd 3996 . . 3 (𝜑𝐶𝐸)
14 1hegrvtxdg1.n . . 3 (𝜑𝐵𝐶)
155, 9, 13, 14nehash2 14510 . 2 (𝜑 → 2 ≤ (♯‘𝐸))
161, 2, 3, 4, 5, 9, 151hevtxdg1 29539 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wne 2938  wss 3963  𝒫 cpw 4605  {csn 4631  {cpr 4633  cop 4637  cfv 6563  1c1 11154  Vtxcvtx 29028  iEdgciedg 29029  VtxDegcvtxdg 29498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-xadd 13153  df-fz 13545  df-hash 14367  df-vtxdg 29499
This theorem is referenced by:  1hegrvtxdg1r  29541  eupth2lem3lem4  30260
  Copyright terms: Public domain W3C validator