MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hegrvtxdg1 Structured version   Visualization version   GIF version

Theorem 1hegrvtxdg1 29492
Description: The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
1hegrvtxdg1.a (𝜑𝐴𝑋)
1hegrvtxdg1.b (𝜑𝐵𝑉)
1hegrvtxdg1.c (𝜑𝐶𝑉)
1hegrvtxdg1.n (𝜑𝐵𝐶)
1hegrvtxdg1.x (𝜑𝐸 ∈ 𝒫 𝑉)
1hegrvtxdg1.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hegrvtxdg1.e (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
1hegrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
Assertion
Ref Expression
1hegrvtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)

Proof of Theorem 1hegrvtxdg1
StepHypRef Expression
1 1hegrvtxdg1.i . 2 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
2 1hegrvtxdg1.v . 2 (𝜑 → (Vtx‘𝐺) = 𝑉)
3 1hegrvtxdg1.a . 2 (𝜑𝐴𝑋)
4 1hegrvtxdg1.b . 2 (𝜑𝐵𝑉)
5 1hegrvtxdg1.x . 2 (𝜑𝐸 ∈ 𝒫 𝑉)
6 1hegrvtxdg1.e . . 3 (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
7 prid1g 4741 . . . 4 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
84, 7syl 17 . . 3 (𝜑𝐵 ∈ {𝐵, 𝐶})
96, 8sseldd 3964 . 2 (𝜑𝐵𝐸)
10 1hegrvtxdg1.c . . . . 5 (𝜑𝐶𝑉)
11 prid2g 4742 . . . . 5 (𝐶𝑉𝐶 ∈ {𝐵, 𝐶})
1210, 11syl 17 . . . 4 (𝜑𝐶 ∈ {𝐵, 𝐶})
136, 12sseldd 3964 . . 3 (𝜑𝐶𝐸)
14 1hegrvtxdg1.n . . 3 (𝜑𝐵𝐶)
155, 9, 13, 14nehash2 14497 . 2 (𝜑 → 2 ≤ (♯‘𝐸))
161, 2, 3, 4, 5, 9, 151hevtxdg1 29491 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2933  wss 3931  𝒫 cpw 4580  {csn 4606  {cpr 4608  cop 4612  cfv 6536  1c1 11135  Vtxcvtx 28980  iEdgciedg 28981  VtxDegcvtxdg 29450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-xadd 13134  df-fz 13530  df-hash 14354  df-vtxdg 29451
This theorem is referenced by:  1hegrvtxdg1r  29493  eupth2lem3lem4  30217
  Copyright terms: Public domain W3C validator