MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1hegrvtxdg1 Structured version   Visualization version   GIF version

Theorem 1hegrvtxdg1 29488
Description: The vertex degree of a graph with one hyperedge, case 2: an edge from the given vertex to some other vertex contributes one to the vertex's degree. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 23-Feb-2021.)
Hypotheses
Ref Expression
1hegrvtxdg1.a (𝜑𝐴𝑋)
1hegrvtxdg1.b (𝜑𝐵𝑉)
1hegrvtxdg1.c (𝜑𝐶𝑉)
1hegrvtxdg1.n (𝜑𝐵𝐶)
1hegrvtxdg1.x (𝜑𝐸 ∈ 𝒫 𝑉)
1hegrvtxdg1.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
1hegrvtxdg1.e (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
1hegrvtxdg1.v (𝜑 → (Vtx‘𝐺) = 𝑉)
Assertion
Ref Expression
1hegrvtxdg1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)

Proof of Theorem 1hegrvtxdg1
StepHypRef Expression
1 1hegrvtxdg1.i . 2 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, 𝐸⟩})
2 1hegrvtxdg1.v . 2 (𝜑 → (Vtx‘𝐺) = 𝑉)
3 1hegrvtxdg1.a . 2 (𝜑𝐴𝑋)
4 1hegrvtxdg1.b . 2 (𝜑𝐵𝑉)
5 1hegrvtxdg1.x . 2 (𝜑𝐸 ∈ 𝒫 𝑉)
6 1hegrvtxdg1.e . . 3 (𝜑 → {𝐵, 𝐶} ⊆ 𝐸)
7 prid1g 4720 . . . 4 (𝐵𝑉𝐵 ∈ {𝐵, 𝐶})
84, 7syl 17 . . 3 (𝜑𝐵 ∈ {𝐵, 𝐶})
96, 8sseldd 3944 . 2 (𝜑𝐵𝐸)
10 1hegrvtxdg1.c . . . . 5 (𝜑𝐶𝑉)
11 prid2g 4721 . . . . 5 (𝐶𝑉𝐶 ∈ {𝐵, 𝐶})
1210, 11syl 17 . . . 4 (𝜑𝐶 ∈ {𝐵, 𝐶})
136, 12sseldd 3944 . . 3 (𝜑𝐶𝐸)
14 1hegrvtxdg1.n . . 3 (𝜑𝐵𝐶)
155, 9, 13, 14nehash2 14415 . 2 (𝜑 → 2 ≤ (♯‘𝐸))
161, 2, 3, 4, 5, 9, 151hevtxdg1 29487 1 (𝜑 → ((VtxDeg‘𝐺)‘𝐵) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wne 2925  wss 3911  𝒫 cpw 4559  {csn 4585  {cpr 4587  cop 4591  cfv 6499  1c1 11045  Vtxcvtx 28976  iEdgciedg 28977  VtxDegcvtxdg 29446
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-xadd 13049  df-fz 13445  df-hash 14272  df-vtxdg 29447
This theorem is referenced by:  1hegrvtxdg1r  29489  eupth2lem3lem4  30210
  Copyright terms: Public domain W3C validator