Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pr2eldif2 Structured version   Visualization version   GIF version

Theorem pr2eldif2 41162
Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.)
Assertion
Ref Expression
pr2eldif2 ({𝐴, 𝐵} ≈ 2o𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴}))

Proof of Theorem pr2eldif2
StepHypRef Expression
1 pren2 41160 . 2 ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵))
2 prid2g 4697 . . . 4 (𝐵 ∈ V → 𝐵 ∈ {𝐴, 𝐵})
323ad2ant2 1133 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) → 𝐵 ∈ {𝐴, 𝐵})
4 necom 2997 . . . . 5 (𝐴𝐵𝐵𝐴)
5 nelsn 4601 . . . . 5 (𝐵𝐴 → ¬ 𝐵 ∈ {𝐴})
64, 5sylbi 216 . . . 4 (𝐴𝐵 → ¬ 𝐵 ∈ {𝐴})
763ad2ant3 1134 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) → ¬ 𝐵 ∈ {𝐴})
83, 7eldifd 3898 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴𝐵) → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴}))
91, 8sylbi 216 1 ({𝐴, 𝐵} ≈ 2o𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  w3a 1086  wcel 2106  wne 2943  Vcvv 3432  cdif 3884  {csn 4561  {cpr 4563   class class class wbr 5074  2oc2o 8291  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-om 7713  df-1o 8297  df-2o 8298  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator