![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pr2eldif2 | Structured version Visualization version GIF version |
Description: If an unordered pair is equinumerous to ordinal two, then a part is an element of the difference of the pair and the singleton of the other part. (Contributed by RP, 21-Oct-2023.) |
Ref | Expression |
---|---|
pr2eldif2 | ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pren2 43220 | . 2 ⊢ ({𝐴, 𝐵} ≈ 2o ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵)) | |
2 | prid2g 4770 | . . . 4 ⊢ (𝐵 ∈ V → 𝐵 ∈ {𝐴, 𝐵}) | |
3 | 2 | 3ad2ant2 1131 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ {𝐴, 𝐵}) |
4 | necom 2984 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴) | |
5 | nelsn 4673 | . . . . 5 ⊢ (𝐵 ≠ 𝐴 → ¬ 𝐵 ∈ {𝐴}) | |
6 | 4, 5 | sylbi 216 | . . . 4 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
7 | 6 | 3ad2ant3 1132 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → ¬ 𝐵 ∈ {𝐴}) |
8 | 3, 7 | eldifd 3958 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) |
9 | 1, 8 | sylbi 216 | 1 ⊢ ({𝐴, 𝐵} ≈ 2o → 𝐵 ∈ ({𝐴, 𝐵} ∖ {𝐴})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1084 ∈ wcel 2099 ≠ wne 2930 Vcvv 3462 ∖ cdif 3944 {csn 4633 {cpr 4635 class class class wbr 5153 2oc2o 8490 ≈ cen 8971 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-ord 6379 df-on 6380 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-1o 8496 df-2o 8497 df-en 8975 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |