MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpupval Structured version   Visualization version   GIF version

Theorem frgpupval 19018
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpupval ((𝜑𝐴𝑊) → (𝐸‘[𝐴] ) = (𝐻 Σg (𝑇𝐴)))
Distinct variable groups:   𝑦,𝑔,𝑧,𝐴   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpupval
StepHypRef Expression
1 frgpup.e . 2 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
2 ovexd 7205 . 2 ((𝜑𝑔𝑊) → (𝐻 Σg (𝑇𝑔)) ∈ V)
3 frgpup.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
4 frgpup.r . . . 4 = ( ~FG𝐼)
53, 4efger 18962 . . 3 Er 𝑊
65a1i 11 . 2 (𝜑 Er 𝑊)
73fvexi 6688 . . 3 𝑊 ∈ V
87a1i 11 . 2 (𝜑𝑊 ∈ V)
9 coeq2 5701 . . 3 (𝑔 = 𝐴 → (𝑇𝑔) = (𝑇𝐴))
109oveq2d 7186 . 2 (𝑔 = 𝐴 → (𝐻 Σg (𝑇𝑔)) = (𝐻 Σg (𝑇𝐴)))
11 frgpup.b . . . 4 𝐵 = (Base‘𝐻)
12 frgpup.n . . . 4 𝑁 = (invg𝐻)
13 frgpup.t . . . 4 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
14 frgpup.h . . . 4 (𝜑𝐻 ∈ Grp)
15 frgpup.i . . . 4 (𝜑𝐼𝑉)
16 frgpup.a . . . 4 (𝜑𝐹:𝐼𝐵)
17 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
18 frgpup.x . . . 4 𝑋 = (Base‘𝐺)
1911, 12, 13, 14, 15, 16, 3, 4, 17, 18, 1frgpupf 19017 . . 3 (𝜑𝐸:𝑋𝐵)
2019ffund 6508 . 2 (𝜑 → Fun 𝐸)
211, 2, 6, 8, 10, 20qliftval 8417 1 ((𝜑𝐴𝑊) → (𝐸‘[𝐴] ) = (𝐻 Σg (𝑇𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wcel 2114  Vcvv 3398  c0 4211  ifcif 4414  cop 4522  cmpt 5110   I cid 5428   × cxp 5523  ran crn 5526  ccom 5529  wf 6335  cfv 6339  (class class class)co 7170  cmpo 7172  2oc2o 8125   Er wer 8317  [cec 8318  Word cword 13955  Basecbs 16586   Σg cgsu 16817  Grpcgrp 18219  invgcminusg 18220   ~FG cefg 18950  freeGrpcfrgp 18951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-ot 4525  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-2o 8132  df-er 8320  df-ec 8322  df-qs 8326  df-map 8439  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-inf 8980  df-card 9441  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-fz 12982  df-fzo 13125  df-seq 13461  df-hash 13783  df-word 13956  df-concat 14012  df-s1 14039  df-substr 14092  df-pfx 14122  df-splice 14201  df-s2 14299  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-sets 16593  df-ress 16594  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-0g 16818  df-gsum 16819  df-imas 16884  df-qus 16885  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-submnd 18073  df-frmd 18130  df-grp 18222  df-minusg 18223  df-efg 18953  df-frgp 18954
This theorem is referenced by:  frgpup1  19019  frgpup2  19020  frgpup3lem  19021
  Copyright terms: Public domain W3C validator