![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgpupval | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | β’ π΅ = (Baseβπ») |
frgpup.n | β’ π = (invgβπ») |
frgpup.t | β’ π = (π¦ β πΌ, π§ β 2o β¦ if(π§ = β , (πΉβπ¦), (πβ(πΉβπ¦)))) |
frgpup.h | β’ (π β π» β Grp) |
frgpup.i | β’ (π β πΌ β π) |
frgpup.a | β’ (π β πΉ:πΌβΆπ΅) |
frgpup.w | β’ π = ( I βWord (πΌ Γ 2o)) |
frgpup.r | β’ βΌ = ( ~FG βπΌ) |
frgpup.g | β’ πΊ = (freeGrpβπΌ) |
frgpup.x | β’ π = (BaseβπΊ) |
frgpup.e | β’ πΈ = ran (π β π β¦ β¨[π] βΌ , (π» Ξ£g (π β π))β©) |
Ref | Expression |
---|---|
frgpupval | β’ ((π β§ π΄ β π) β (πΈβ[π΄] βΌ ) = (π» Ξ£g (π β π΄))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.e | . 2 β’ πΈ = ran (π β π β¦ β¨[π] βΌ , (π» Ξ£g (π β π))β©) | |
2 | ovexd 7443 | . 2 β’ ((π β§ π β π) β (π» Ξ£g (π β π)) β V) | |
3 | frgpup.w | . . . 4 β’ π = ( I βWord (πΌ Γ 2o)) | |
4 | frgpup.r | . . . 4 β’ βΌ = ( ~FG βπΌ) | |
5 | 3, 4 | efger 19585 | . . 3 β’ βΌ Er π |
6 | 5 | a1i 11 | . 2 β’ (π β βΌ Er π) |
7 | 3 | fvexi 6905 | . . 3 β’ π β V |
8 | 7 | a1i 11 | . 2 β’ (π β π β V) |
9 | coeq2 5858 | . . 3 β’ (π = π΄ β (π β π) = (π β π΄)) | |
10 | 9 | oveq2d 7424 | . 2 β’ (π = π΄ β (π» Ξ£g (π β π)) = (π» Ξ£g (π β π΄))) |
11 | frgpup.b | . . . 4 β’ π΅ = (Baseβπ») | |
12 | frgpup.n | . . . 4 β’ π = (invgβπ») | |
13 | frgpup.t | . . . 4 β’ π = (π¦ β πΌ, π§ β 2o β¦ if(π§ = β , (πΉβπ¦), (πβ(πΉβπ¦)))) | |
14 | frgpup.h | . . . 4 β’ (π β π» β Grp) | |
15 | frgpup.i | . . . 4 β’ (π β πΌ β π) | |
16 | frgpup.a | . . . 4 β’ (π β πΉ:πΌβΆπ΅) | |
17 | frgpup.g | . . . 4 β’ πΊ = (freeGrpβπΌ) | |
18 | frgpup.x | . . . 4 β’ π = (BaseβπΊ) | |
19 | 11, 12, 13, 14, 15, 16, 3, 4, 17, 18, 1 | frgpupf 19640 | . . 3 β’ (π β πΈ:πβΆπ΅) |
20 | 19 | ffund 6721 | . 2 β’ (π β Fun πΈ) |
21 | 1, 2, 6, 8, 10, 20 | qliftval 8799 | 1 β’ ((π β§ π΄ β π) β (πΈβ[π΄] βΌ ) = (π» Ξ£g (π β π΄))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β c0 4322 ifcif 4528 β¨cop 4634 β¦ cmpt 5231 I cid 5573 Γ cxp 5674 ran crn 5677 β ccom 5680 βΆwf 6539 βcfv 6543 (class class class)co 7408 β cmpo 7410 2oc2o 8459 Er wer 8699 [cec 8700 Word cword 14463 Basecbs 17143 Ξ£g cgsu 17385 Grpcgrp 18818 invgcminusg 18819 ~FG cefg 19573 freeGrpcfrgp 19574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-er 8702 df-ec 8704 df-qs 8708 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-word 14464 df-concat 14520 df-s1 14545 df-substr 14590 df-pfx 14620 df-splice 14699 df-s2 14798 df-struct 17079 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-0g 17386 df-gsum 17387 df-imas 17453 df-qus 17454 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-submnd 18671 df-frmd 18729 df-grp 18821 df-minusg 18822 df-efg 19576 df-frgp 19577 |
This theorem is referenced by: frgpup1 19642 frgpup2 19643 frgpup3lem 19644 |
Copyright terms: Public domain | W3C validator |