Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgpupval Structured version   Visualization version   GIF version

Theorem frgpupval 18892
 Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
frgpup.b 𝐵 = (Base‘𝐻)
frgpup.n 𝑁 = (invg𝐻)
frgpup.t 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
frgpup.h (𝜑𝐻 ∈ Grp)
frgpup.i (𝜑𝐼𝑉)
frgpup.a (𝜑𝐹:𝐼𝐵)
frgpup.w 𝑊 = ( I ‘Word (𝐼 × 2o))
frgpup.r = ( ~FG𝐼)
frgpup.g 𝐺 = (freeGrp‘𝐼)
frgpup.x 𝑋 = (Base‘𝐺)
frgpup.e 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
Assertion
Ref Expression
frgpupval ((𝜑𝐴𝑊) → (𝐸‘[𝐴] ) = (𝐻 Σg (𝑇𝐴)))
Distinct variable groups:   𝑦,𝑔,𝑧,𝐴   𝑔,𝐻   𝑦,𝐹,𝑧   𝑦,𝑁,𝑧   𝐵,𝑔,𝑦,𝑧   𝑇,𝑔   ,𝑔   𝜑,𝑔,𝑦,𝑧   𝑦,𝐼,𝑧   𝑔,𝑊
Allowed substitution hints:   (𝑦,𝑧)   𝑇(𝑦,𝑧)   𝐸(𝑦,𝑧,𝑔)   𝐹(𝑔)   𝐺(𝑦,𝑧,𝑔)   𝐻(𝑦,𝑧)   𝐼(𝑔)   𝑁(𝑔)   𝑉(𝑦,𝑧,𝑔)   𝑊(𝑦,𝑧)   𝑋(𝑦,𝑧,𝑔)

Proof of Theorem frgpupval
StepHypRef Expression
1 frgpup.e . 2 𝐸 = ran (𝑔𝑊 ↦ ⟨[𝑔] , (𝐻 Σg (𝑇𝑔))⟩)
2 ovexd 7183 . 2 ((𝜑𝑔𝑊) → (𝐻 Σg (𝑇𝑔)) ∈ V)
3 frgpup.w . . . 4 𝑊 = ( I ‘Word (𝐼 × 2o))
4 frgpup.r . . . 4 = ( ~FG𝐼)
53, 4efger 18836 . . 3 Er 𝑊
65a1i 11 . 2 (𝜑 Er 𝑊)
73fvexi 6677 . . 3 𝑊 ∈ V
87a1i 11 . 2 (𝜑𝑊 ∈ V)
9 coeq2 5722 . . 3 (𝑔 = 𝐴 → (𝑇𝑔) = (𝑇𝐴))
109oveq2d 7164 . 2 (𝑔 = 𝐴 → (𝐻 Σg (𝑇𝑔)) = (𝐻 Σg (𝑇𝐴)))
11 frgpup.b . . . 4 𝐵 = (Base‘𝐻)
12 frgpup.n . . . 4 𝑁 = (invg𝐻)
13 frgpup.t . . . 4 𝑇 = (𝑦𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹𝑦), (𝑁‘(𝐹𝑦))))
14 frgpup.h . . . 4 (𝜑𝐻 ∈ Grp)
15 frgpup.i . . . 4 (𝜑𝐼𝑉)
16 frgpup.a . . . 4 (𝜑𝐹:𝐼𝐵)
17 frgpup.g . . . 4 𝐺 = (freeGrp‘𝐼)
18 frgpup.x . . . 4 𝑋 = (Base‘𝐺)
1911, 12, 13, 14, 15, 16, 3, 4, 17, 18, 1frgpupf 18891 . . 3 (𝜑𝐸:𝑋𝐵)
2019ffund 6511 . 2 (𝜑 → Fun 𝐸)
211, 2, 6, 8, 10, 20qliftval 8378 1 ((𝜑𝐴𝑊) → (𝐸‘[𝐴] ) = (𝐻 Σg (𝑇𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 398   = wceq 1531   ∈ wcel 2108  Vcvv 3493  ∅c0 4289  ifcif 4465  ⟨cop 4565   ↦ cmpt 5137   I cid 5452   × cxp 5546  ran crn 5549   ∘ ccom 5552  ⟶wf 6344  ‘cfv 6348  (class class class)co 7148   ∈ cmpo 7150  2oc2o 8088   Er wer 8278  [cec 8279  Word cword 13853  Basecbs 16475   Σg cgsu 16706  Grpcgrp 18095  invgcminusg 18096   ~FG cefg 18824  freeGrpcfrgp 18825 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-ot 4568  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-2o 8095  df-oadd 8098  df-er 8281  df-ec 8283  df-qs 8287  df-map 8400  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-fzo 13026  df-seq 13362  df-hash 13683  df-word 13854  df-concat 13915  df-s1 13942  df-substr 13995  df-pfx 14025  df-splice 14104  df-s2 14202  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-0g 16707  df-gsum 16708  df-imas 16773  df-qus 16774  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-frmd 18006  df-grp 18098  df-minusg 18099  df-efg 18827  df-frgp 18828 This theorem is referenced by:  frgpup1  18893  frgpup2  18894  frgpup3lem  18895
 Copyright terms: Public domain W3C validator