Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgpupval | Structured version Visualization version GIF version |
Description: Any assignment of the generators to target elements can be extended (uniquely) to a homomorphism from a free monoid to an arbitrary other monoid. (Contributed by Mario Carneiro, 2-Oct-2015.) |
Ref | Expression |
---|---|
frgpup.b | ⊢ 𝐵 = (Base‘𝐻) |
frgpup.n | ⊢ 𝑁 = (invg‘𝐻) |
frgpup.t | ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) |
frgpup.h | ⊢ (𝜑 → 𝐻 ∈ Grp) |
frgpup.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
frgpup.a | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
frgpup.w | ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) |
frgpup.r | ⊢ ∼ = ( ~FG ‘𝐼) |
frgpup.g | ⊢ 𝐺 = (freeGrp‘𝐼) |
frgpup.x | ⊢ 𝑋 = (Base‘𝐺) |
frgpup.e | ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) |
Ref | Expression |
---|---|
frgpupval | ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑊) → (𝐸‘[𝐴] ∼ ) = (𝐻 Σg (𝑇 ∘ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpup.e | . 2 ⊢ 𝐸 = ran (𝑔 ∈ 𝑊 ↦ 〈[𝑔] ∼ , (𝐻 Σg (𝑇 ∘ 𝑔))〉) | |
2 | ovexd 7290 | . 2 ⊢ ((𝜑 ∧ 𝑔 ∈ 𝑊) → (𝐻 Σg (𝑇 ∘ 𝑔)) ∈ V) | |
3 | frgpup.w | . . . 4 ⊢ 𝑊 = ( I ‘Word (𝐼 × 2o)) | |
4 | frgpup.r | . . . 4 ⊢ ∼ = ( ~FG ‘𝐼) | |
5 | 3, 4 | efger 19239 | . . 3 ⊢ ∼ Er 𝑊 |
6 | 5 | a1i 11 | . 2 ⊢ (𝜑 → ∼ Er 𝑊) |
7 | 3 | fvexi 6770 | . . 3 ⊢ 𝑊 ∈ V |
8 | 7 | a1i 11 | . 2 ⊢ (𝜑 → 𝑊 ∈ V) |
9 | coeq2 5756 | . . 3 ⊢ (𝑔 = 𝐴 → (𝑇 ∘ 𝑔) = (𝑇 ∘ 𝐴)) | |
10 | 9 | oveq2d 7271 | . 2 ⊢ (𝑔 = 𝐴 → (𝐻 Σg (𝑇 ∘ 𝑔)) = (𝐻 Σg (𝑇 ∘ 𝐴))) |
11 | frgpup.b | . . . 4 ⊢ 𝐵 = (Base‘𝐻) | |
12 | frgpup.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
13 | frgpup.t | . . . 4 ⊢ 𝑇 = (𝑦 ∈ 𝐼, 𝑧 ∈ 2o ↦ if(𝑧 = ∅, (𝐹‘𝑦), (𝑁‘(𝐹‘𝑦)))) | |
14 | frgpup.h | . . . 4 ⊢ (𝜑 → 𝐻 ∈ Grp) | |
15 | frgpup.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
16 | frgpup.a | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
17 | frgpup.g | . . . 4 ⊢ 𝐺 = (freeGrp‘𝐼) | |
18 | frgpup.x | . . . 4 ⊢ 𝑋 = (Base‘𝐺) | |
19 | 11, 12, 13, 14, 15, 16, 3, 4, 17, 18, 1 | frgpupf 19294 | . . 3 ⊢ (𝜑 → 𝐸:𝑋⟶𝐵) |
20 | 19 | ffund 6588 | . 2 ⊢ (𝜑 → Fun 𝐸) |
21 | 1, 2, 6, 8, 10, 20 | qliftval 8553 | 1 ⊢ ((𝜑 ∧ 𝐴 ∈ 𝑊) → (𝐸‘[𝐴] ∼ ) = (𝐻 Σg (𝑇 ∘ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∅c0 4253 ifcif 4456 〈cop 4564 ↦ cmpt 5153 I cid 5479 × cxp 5578 ran crn 5581 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ∈ cmpo 7257 2oc2o 8261 Er wer 8453 [cec 8454 Word cword 14145 Basecbs 16840 Σg cgsu 17068 Grpcgrp 18492 invgcminusg 18493 ~FG cefg 19227 freeGrpcfrgp 19228 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-ec 8458 df-qs 8462 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-substr 14282 df-pfx 14312 df-splice 14391 df-s2 14489 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-gsum 17070 df-imas 17136 df-qus 17137 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-frmd 18403 df-grp 18495 df-minusg 18496 df-efg 19230 df-frgp 19231 |
This theorem is referenced by: frgpup1 19296 frgpup2 19297 frgpup3lem 19298 |
Copyright terms: Public domain | W3C validator |