![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version |
Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | readdcl 11263 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 (class class class)co 7445 ℝcr 11179 + caddc 11183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11241 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: resubcli 11594 eqneg 12010 ledivp1i 12216 ltdivp1i 12217 nnne0 12323 2re 12363 3re 12369 4re 12373 5re 12376 6re 12379 7re 12382 8re 12385 9re 12388 10re 12773 numltc 12780 nn0opthlem2 14314 hashunlei 14470 hashge2el2dif 14525 abs3lemi 15455 ef01bndlem 16226 divalglem6 16440 log2ub 27001 mumullem2 27232 bposlem8 27344 dchrvmasumlem2 27551 ex-fl 30470 norm-ii-i 31160 norm3lem 31172 nmoptrii 32117 bdophsi 32119 unierri 32127 staddi 32269 stadd3i 32271 dp2ltc 32843 dpmul4 32870 ballotlem2 34445 hgt750lem 34620 poimirlem16 37544 itg2addnclem3 37581 fdc 37653 remul02 42314 sn-0tie0 42348 pellqrex 42772 stirlinglem11 45939 fouriersw 46086 zm1nn 47149 evengpoap3 47605 |
Copyright terms: Public domain | W3C validator |