| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | readdcl 11239 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 (class class class)co 7432 ℝcr 11155 + caddc 11159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: resubcli 11572 eqneg 11988 ledivp1i 12194 ltdivp1i 12195 nnne0 12301 2re 12341 3re 12347 4re 12351 5re 12354 6re 12357 7re 12360 8re 12363 9re 12366 10re 12754 numltc 12761 nn0opthlem2 14309 hashunlei 14465 hashge2el2dif 14520 abs3lemi 15450 ef01bndlem 16221 divalglem6 16436 log2ub 26993 mumullem2 27224 bposlem8 27336 dchrvmasumlem2 27543 ex-fl 30467 norm-ii-i 31157 norm3lem 31169 nmoptrii 32114 bdophsi 32116 unierri 32124 staddi 32266 stadd3i 32268 dp2ltc 32870 dpmul4 32897 ballotlem2 34492 hgt750lem 34667 poimirlem16 37644 itg2addnclem3 37681 fdc 37753 remul02 42440 sn-0tie0 42474 pellqrex 42895 stirlinglem11 46104 fouriersw 46251 zm1nn 47319 evengpoap3 47791 |
| Copyright terms: Public domain | W3C validator |