| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | readdcl 11217 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 + caddc 11137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11195 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: resubcli 11550 eqneg 11966 ledivp1i 12172 ltdivp1i 12173 nnne0 12279 2re 12319 3re 12325 4re 12329 5re 12332 6re 12335 7re 12338 8re 12341 9re 12344 10re 12732 numltc 12739 nn0opthlem2 14292 hashunlei 14448 hashge2el2dif 14503 abs3lemi 15434 ef01bndlem 16207 divalglem6 16422 log2ub 26916 mumullem2 27147 bposlem8 27259 dchrvmasumlem2 27466 ex-fl 30433 norm-ii-i 31123 norm3lem 31135 nmoptrii 32080 bdophsi 32082 unierri 32090 staddi 32232 stadd3i 32234 dp2ltc 32866 dpmul4 32893 ballotlem2 34526 hgt750lem 34688 poimirlem16 37665 itg2addnclem3 37702 fdc 37774 remul02 42423 sn-0tie0 42457 pellqrex 42877 stirlinglem11 46093 fouriersw 46240 zm1nn 47311 evengpoap3 47793 |
| Copyright terms: Public domain | W3C validator |