MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  readdcli Structured version   Visualization version   GIF version

Theorem readdcli 11301
Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.)
Hypotheses
Ref Expression
recni.1 𝐴 ∈ ℝ
axri.2 𝐵 ∈ ℝ
Assertion
Ref Expression
readdcli (𝐴 + 𝐵) ∈ ℝ

Proof of Theorem readdcli
StepHypRef Expression
1 recni.1 . 2 𝐴 ∈ ℝ
2 axri.2 . 2 𝐵 ∈ ℝ
3 readdcl 11263 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ)
41, 2, 3mp2an 691 1 (𝐴 + 𝐵) ∈ ℝ
Colors of variables: wff setvar class
Syntax hints:  wcel 2103  (class class class)co 7445  cr 11179   + caddc 11183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-addrcl 11241
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  resubcli  11594  eqneg  12010  ledivp1i  12216  ltdivp1i  12217  nnne0  12323  2re  12363  3re  12369  4re  12373  5re  12376  6re  12379  7re  12382  8re  12385  9re  12388  10re  12773  numltc  12780  nn0opthlem2  14314  hashunlei  14470  hashge2el2dif  14525  abs3lemi  15455  ef01bndlem  16226  divalglem6  16440  log2ub  27001  mumullem2  27232  bposlem8  27344  dchrvmasumlem2  27551  ex-fl  30470  norm-ii-i  31160  norm3lem  31172  nmoptrii  32117  bdophsi  32119  unierri  32127  staddi  32269  stadd3i  32271  dp2ltc  32843  dpmul4  32870  ballotlem2  34445  hgt750lem  34620  poimirlem16  37544  itg2addnclem3  37581  fdc  37653  remul02  42314  sn-0tie0  42348  pellqrex  42772  stirlinglem11  45939  fouriersw  46086  zm1nn  47149  evengpoap3  47605
  Copyright terms: Public domain W3C validator