![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version |
Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | readdcl 11236 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℝcr 11152 + caddc 11156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11214 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: resubcli 11569 eqneg 11985 ledivp1i 12191 ltdivp1i 12192 nnne0 12298 2re 12338 3re 12344 4re 12348 5re 12351 6re 12354 7re 12357 8re 12360 9re 12363 10re 12750 numltc 12757 nn0opthlem2 14305 hashunlei 14461 hashge2el2dif 14516 abs3lemi 15446 ef01bndlem 16217 divalglem6 16432 log2ub 27007 mumullem2 27238 bposlem8 27350 dchrvmasumlem2 27557 ex-fl 30476 norm-ii-i 31166 norm3lem 31178 nmoptrii 32123 bdophsi 32125 unierri 32133 staddi 32275 stadd3i 32277 dp2ltc 32854 dpmul4 32881 ballotlem2 34470 hgt750lem 34645 poimirlem16 37623 itg2addnclem3 37660 fdc 37732 remul02 42412 sn-0tie0 42446 pellqrex 42867 stirlinglem11 46040 fouriersw 46187 zm1nn 47252 evengpoap3 47724 |
Copyright terms: Public domain | W3C validator |