Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version |
Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | readdcl 10658 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2111 (class class class)co 7150 ℝcr 10574 + caddc 10578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 10636 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: resubcli 10986 eqneg 11398 ledivp1i 11603 ltdivp1i 11604 nnne0 11708 2re 11748 3re 11754 4re 11758 5re 11761 6re 11764 7re 11767 8re 11770 9re 11773 10re 12156 numltc 12163 nn0opthlem2 13679 hashunlei 13836 hashge2el2dif 13890 abs3lemi 14818 ef01bndlem 15585 divalglem6 15799 log2ub 25634 mumullem2 25864 bposlem8 25974 dchrvmasumlem2 26181 ex-fl 28331 norm-ii-i 29019 norm3lem 29031 nmoptrii 29976 bdophsi 29978 unierri 29986 staddi 30128 stadd3i 30130 dp2ltc 30685 dpmul4 30712 ballotlem2 31974 hgt750lem 32150 poimirlem16 35353 itg2addnclem3 35390 fdc 35463 remul02 39885 sn-0tie0 39918 pellqrex 40193 stirlinglem11 43092 fouriersw 43239 zm1nn 44227 evengpoap3 44684 |
Copyright terms: Public domain | W3C validator |