![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version |
Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | readdcl 11267 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 + caddc 11187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11245 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: resubcli 11598 eqneg 12014 ledivp1i 12220 ltdivp1i 12221 nnne0 12327 2re 12367 3re 12373 4re 12377 5re 12380 6re 12383 7re 12386 8re 12389 9re 12392 10re 12777 numltc 12784 nn0opthlem2 14318 hashunlei 14474 hashge2el2dif 14529 abs3lemi 15459 ef01bndlem 16232 divalglem6 16446 log2ub 27010 mumullem2 27241 bposlem8 27353 dchrvmasumlem2 27560 ex-fl 30479 norm-ii-i 31169 norm3lem 31181 nmoptrii 32126 bdophsi 32128 unierri 32136 staddi 32278 stadd3i 32280 dp2ltc 32851 dpmul4 32878 ballotlem2 34453 hgt750lem 34628 poimirlem16 37596 itg2addnclem3 37633 fdc 37705 remul02 42381 sn-0tie0 42415 pellqrex 42835 stirlinglem11 46005 fouriersw 46152 zm1nn 47217 evengpoap3 47673 |
Copyright terms: Public domain | W3C validator |