| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | readdcl 11092 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℝcr 11008 + caddc 11012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: resubcli 11426 eqneg 11844 ledivp1i 12050 ltdivp1i 12051 nnne0 12162 2re 12202 3re 12208 4re 12212 5re 12215 6re 12218 7re 12221 8re 12224 9re 12227 10re 12610 numltc 12617 nn0opthlem2 14176 hashunlei 14332 hashge2el2dif 14387 abs3lemi 15318 ef01bndlem 16093 divalglem6 16309 log2ub 26857 mumullem2 27088 bposlem8 27200 dchrvmasumlem2 27407 ex-fl 30391 norm-ii-i 31081 norm3lem 31093 nmoptrii 32038 bdophsi 32040 unierri 32048 staddi 32190 stadd3i 32192 dp2ltc 32828 dpmul4 32855 ballotlem2 34463 hgt750lem 34625 poimirlem16 37626 itg2addnclem3 37663 fdc 37735 remul02 42388 sn-0tie0 42434 pellqrex 42862 stirlinglem11 46075 fouriersw 46222 zm1nn 47296 evengpoap3 47793 |
| Copyright terms: Public domain | W3C validator |