Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version |
Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | readdcl 10885 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 + caddc 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 10863 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: resubcli 11213 eqneg 11625 ledivp1i 11830 ltdivp1i 11831 nnne0 11937 2re 11977 3re 11983 4re 11987 5re 11990 6re 11993 7re 11996 8re 11999 9re 12002 10re 12385 numltc 12392 nn0opthlem2 13911 hashunlei 14068 hashge2el2dif 14122 abs3lemi 15050 ef01bndlem 15821 divalglem6 16035 log2ub 26004 mumullem2 26234 bposlem8 26344 dchrvmasumlem2 26551 ex-fl 28712 norm-ii-i 29400 norm3lem 29412 nmoptrii 30357 bdophsi 30359 unierri 30367 staddi 30509 stadd3i 30511 dp2ltc 31063 dpmul4 31090 ballotlem2 32355 hgt750lem 32531 poimirlem16 35720 itg2addnclem3 35757 fdc 35830 remul02 40309 sn-0tie0 40342 pellqrex 40617 stirlinglem11 43515 fouriersw 43662 zm1nn 44682 evengpoap3 45139 |
Copyright terms: Public domain | W3C validator |