| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | readdcl 11157 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7389 ℝcr 11073 + caddc 11077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11135 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: resubcli 11490 eqneg 11908 ledivp1i 12114 ltdivp1i 12115 nnne0 12221 2re 12261 3re 12267 4re 12271 5re 12274 6re 12277 7re 12280 8re 12283 9re 12286 10re 12674 numltc 12681 nn0opthlem2 14240 hashunlei 14396 hashge2el2dif 14451 abs3lemi 15383 ef01bndlem 16158 divalglem6 16374 log2ub 26865 mumullem2 27096 bposlem8 27208 dchrvmasumlem2 27415 ex-fl 30382 norm-ii-i 31072 norm3lem 31084 nmoptrii 32029 bdophsi 32031 unierri 32039 staddi 32181 stadd3i 32183 dp2ltc 32813 dpmul4 32840 ballotlem2 34486 hgt750lem 34648 poimirlem16 37625 itg2addnclem3 37662 fdc 37734 remul02 42388 sn-0tie0 42434 pellqrex 42860 stirlinglem11 46075 fouriersw 46222 zm1nn 47293 evengpoap3 47790 |
| Copyright terms: Public domain | W3C validator |