Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version |
Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | readdcl 10954 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 10932 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: resubcli 11283 eqneg 11695 ledivp1i 11900 ltdivp1i 11901 nnne0 12007 2re 12047 3re 12053 4re 12057 5re 12060 6re 12063 7re 12066 8re 12069 9re 12072 10re 12456 numltc 12463 nn0opthlem2 13983 hashunlei 14140 hashge2el2dif 14194 abs3lemi 15122 ef01bndlem 15893 divalglem6 16107 log2ub 26099 mumullem2 26329 bposlem8 26439 dchrvmasumlem2 26646 ex-fl 28811 norm-ii-i 29499 norm3lem 29511 nmoptrii 30456 bdophsi 30458 unierri 30466 staddi 30608 stadd3i 30610 dp2ltc 31161 dpmul4 31188 ballotlem2 32455 hgt750lem 32631 poimirlem16 35793 itg2addnclem3 35830 fdc 35903 remul02 40388 sn-0tie0 40421 pellqrex 40701 stirlinglem11 43625 fouriersw 43772 zm1nn 44794 evengpoap3 45251 |
Copyright terms: Public domain | W3C validator |