| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | readdcl 11089 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 + caddc 11009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11067 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: resubcli 11423 eqneg 11841 ledivp1i 12047 ltdivp1i 12048 nnne0 12159 2re 12199 3re 12205 4re 12209 5re 12212 6re 12215 7re 12218 8re 12221 9re 12224 10re 12607 numltc 12614 nn0opthlem2 14176 hashunlei 14332 hashge2el2dif 14387 abs3lemi 15318 ef01bndlem 16093 divalglem6 16309 log2ub 26886 mumullem2 27117 bposlem8 27229 dchrvmasumlem2 27436 ex-fl 30427 norm-ii-i 31117 norm3lem 31129 nmoptrii 32074 bdophsi 32076 unierri 32084 staddi 32226 stadd3i 32228 dp2ltc 32867 dpmul4 32894 ballotlem2 34502 hgt750lem 34664 poimirlem16 37686 itg2addnclem3 37723 fdc 37795 remul02 42508 sn-0tie0 42554 pellqrex 42982 stirlinglem11 46192 fouriersw 46339 zm1nn 47412 evengpoap3 47909 |
| Copyright terms: Public domain | W3C validator |