| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > readdcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| readdcli | ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | readdcl 11127 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 + caddc 11047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addrcl 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: resubcli 11460 eqneg 11878 ledivp1i 12084 ltdivp1i 12085 nnne0 12196 2re 12236 3re 12242 4re 12246 5re 12249 6re 12252 7re 12255 8re 12258 9re 12261 10re 12644 numltc 12651 nn0opthlem2 14210 hashunlei 14366 hashge2el2dif 14421 abs3lemi 15353 ef01bndlem 16128 divalglem6 16344 log2ub 26892 mumullem2 27123 bposlem8 27235 dchrvmasumlem2 27442 ex-fl 30426 norm-ii-i 31116 norm3lem 31128 nmoptrii 32073 bdophsi 32075 unierri 32083 staddi 32225 stadd3i 32227 dp2ltc 32857 dpmul4 32884 ballotlem2 34473 hgt750lem 34635 poimirlem16 37623 itg2addnclem3 37660 fdc 37732 remul02 42386 sn-0tie0 42432 pellqrex 42860 stirlinglem11 46075 fouriersw 46222 zm1nn 47296 evengpoap3 47793 |
| Copyright terms: Public domain | W3C validator |