Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoptrii Structured version   Visualization version   GIF version

Theorem nmoptrii 29884
 Description: Triangle inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmoptrii (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))

Proof of Theorem nmoptrii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . 5 𝑆 ∈ BndLinOp
2 bdopf 29652 . . . . 5 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . 4 𝑆: ℋ⟶ ℋ
4 nmoptri.2 . . . . 5 𝑇 ∈ BndLinOp
5 bdopf 29652 . . . . 5 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
64, 5ax-mp 5 . . . 4 𝑇: ℋ⟶ ℋ
73, 6hoaddcli 29558 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
8 nmopre 29660 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
91, 8ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
10 nmopre 29660 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
114, 10ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
129, 11readdcli 10647 . . . 4 ((normop𝑆) + (normop𝑇)) ∈ ℝ
1312rexri 10690 . . 3 ((normop𝑆) + (normop𝑇)) ∈ ℝ*
14 nmopub 29698 . . 3 (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) + (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))))
157, 13, 14mp2an 691 . 2 ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
163, 6hoscli 29552 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) ∈ ℋ)
17 normcl 28915 . . . . . 6 (((𝑆 +op 𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1816, 17syl 17 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1918adantr 484 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
203ffvelrni 6827 . . . . . . 7 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
21 normcl 28915 . . . . . . 7 ((𝑆𝑥) ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
236ffvelrni 6827 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
24 normcl 28915 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2523, 24syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2622, 25readdcld 10661 . . . . 5 (𝑥 ∈ ℋ → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2726adantr 484 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2812a1i 11 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑆) + (normop𝑇)) ∈ ℝ)
29 hosval 29530 . . . . . . . 8 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
303, 6, 29mp3an12 1448 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
3130fveq2d 6649 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) = (norm‘((𝑆𝑥) + (𝑇𝑥))))
32 norm-ii 28928 . . . . . . 7 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3320, 23, 32syl2anc 587 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3431, 33eqbrtrd 5052 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3534adantr 484 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
36 nmoplb 29697 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
373, 36mp3an1 1445 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
38 nmoplb 29697 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
396, 38mp3an1 1445 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
40 le2add 11113 . . . . . . . 8 ((((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) ∧ ((normop𝑆) ∈ ℝ ∧ (normop𝑇) ∈ ℝ)) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
419, 11, 40mpanr12 704 . . . . . . 7 (((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4222, 25, 41syl2anc 587 . . . . . 6 (𝑥 ∈ ℋ → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4342adantr 484 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4437, 39, 43mp2and 698 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇)))
4519, 27, 28, 35, 44letrd 10788 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))
4645ex 416 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
4715, 46mprgbir 3121 1 (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∀wral 3106   class class class wbr 5030  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℝcr 10527  1c1 10529   + caddc 10531  ℝ*cxr 10665   ≤ cle 10667   ℋchba 28709   +ℎ cva 28710  normℎcno 28713   +op chos 28728  normopcnop 28735  BndLinOpcbo 28738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605  ax-pre-sup 10606  ax-hilex 28789  ax-hfvadd 28790  ax-hvcom 28791  ax-hvass 28792  ax-hv0cl 28793  ax-hvaddid 28794  ax-hfvmul 28795  ax-hvmulid 28796  ax-hvmulass 28797  ax-hvdistr1 28798  ax-hvdistr2 28799  ax-hvmul0 28800  ax-hfi 28869  ax-his1 28872  ax-his2 28873  ax-his3 28874  ax-his4 28875 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7563  df-1st 7673  df-2nd 7674  df-wrecs 7932  df-recs 7993  df-rdg 8031  df-er 8274  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-sup 8892  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-nn 11628  df-2 11690  df-3 11691  df-4 11692  df-n0 11888  df-z 11972  df-uz 12234  df-rp 12380  df-seq 13367  df-exp 13428  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-grpo 28283  df-gid 28284  df-ablo 28335  df-vc 28349  df-nv 28382  df-va 28385  df-ba 28386  df-sm 28387  df-0v 28388  df-nmcv 28390  df-hnorm 28758  df-hba 28759  df-hvsub 28761  df-hosum 29520  df-nmop 29629  df-lnop 29631  df-bdop 29632 This theorem is referenced by:  bdophsi  29886  nmoptri2i  29889  unierri  29894
 Copyright terms: Public domain W3C validator