| Step | Hyp | Ref
| Expression |
| 1 | | nmoptri.1 |
. . . . 5
⊢ 𝑆 ∈
BndLinOp |
| 2 | | bdopf 31828 |
. . . . 5
⊢ (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶
ℋ) |
| 3 | 1, 2 | ax-mp 5 |
. . . 4
⊢ 𝑆: ℋ⟶
ℋ |
| 4 | | nmoptri.2 |
. . . . 5
⊢ 𝑇 ∈
BndLinOp |
| 5 | | bdopf 31828 |
. . . . 5
⊢ (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶
ℋ) |
| 6 | 4, 5 | ax-mp 5 |
. . . 4
⊢ 𝑇: ℋ⟶
ℋ |
| 7 | 3, 6 | hoaddcli 31734 |
. . 3
⊢ (𝑆 +op 𝑇): ℋ⟶
ℋ |
| 8 | | nmopre 31836 |
. . . . . 6
⊢ (𝑆 ∈ BndLinOp →
(normop‘𝑆)
∈ ℝ) |
| 9 | 1, 8 | ax-mp 5 |
. . . . 5
⊢
(normop‘𝑆) ∈ ℝ |
| 10 | | nmopre 31836 |
. . . . . 6
⊢ (𝑇 ∈ BndLinOp →
(normop‘𝑇)
∈ ℝ) |
| 11 | 4, 10 | ax-mp 5 |
. . . . 5
⊢
(normop‘𝑇) ∈ ℝ |
| 12 | 9, 11 | readdcli 11259 |
. . . 4
⊢
((normop‘𝑆) + (normop‘𝑇)) ∈
ℝ |
| 13 | 12 | rexri 11302 |
. . 3
⊢
((normop‘𝑆) + (normop‘𝑇)) ∈
ℝ* |
| 14 | | nmopub 31874 |
. . 3
⊢ (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧
((normop‘𝑆) + (normop‘𝑇)) ∈ ℝ*)
→ ((normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) +
(normop‘𝑇)) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop‘𝑆) +
(normop‘𝑇))))) |
| 15 | 7, 13, 14 | mp2an 692 |
. 2
⊢
((normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) +
(normop‘𝑇)) ↔ ∀𝑥 ∈ ℋ
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop‘𝑆) +
(normop‘𝑇)))) |
| 16 | 3, 6 | hoscli 31728 |
. . . . . 6
⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) ∈ ℋ) |
| 17 | | normcl 31091 |
. . . . . 6
⊢ (((𝑆 +op 𝑇)‘𝑥) ∈ ℋ →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ) |
| 18 | 16, 17 | syl 17 |
. . . . 5
⊢ (𝑥 ∈ ℋ →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ) |
| 19 | 18 | adantr 480 |
. . . 4
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ) |
| 20 | 3 | ffvelcdmi 7084 |
. . . . . . 7
⊢ (𝑥 ∈ ℋ → (𝑆‘𝑥) ∈ ℋ) |
| 21 | | normcl 31091 |
. . . . . . 7
⊢ ((𝑆‘𝑥) ∈ ℋ →
(normℎ‘(𝑆‘𝑥)) ∈ ℝ) |
| 22 | 20, 21 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ ℋ →
(normℎ‘(𝑆‘𝑥)) ∈ ℝ) |
| 23 | 6 | ffvelcdmi 7084 |
. . . . . . 7
⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
| 24 | | normcl 31091 |
. . . . . . 7
⊢ ((𝑇‘𝑥) ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 25 | 23, 24 | syl 17 |
. . . . . 6
⊢ (𝑥 ∈ ℋ →
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) |
| 26 | 22, 25 | readdcld 11273 |
. . . . 5
⊢ (𝑥 ∈ ℋ →
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥))) ∈ ℝ) |
| 27 | 26 | adantr 480 |
. . . 4
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥))) ∈ ℝ) |
| 28 | 12 | a1i 11 |
. . . 4
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normop‘𝑆) + (normop‘𝑇)) ∈
ℝ) |
| 29 | | hosval 31706 |
. . . . . . . 8
⊢ ((𝑆: ℋ⟶ ℋ ∧
𝑇: ℋ⟶ ℋ
∧ 𝑥 ∈ ℋ)
→ ((𝑆 +op
𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 30 | 3, 6, 29 | mp3an12 1452 |
. . . . . . 7
⊢ (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) |
| 31 | 30 | fveq2d 6891 |
. . . . . 6
⊢ (𝑥 ∈ ℋ →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) = (normℎ‘((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) |
| 32 | | norm-ii 31104 |
. . . . . . 7
⊢ (((𝑆‘𝑥) ∈ ℋ ∧ (𝑇‘𝑥) ∈ ℋ) →
(normℎ‘((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) ≤
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥)))) |
| 33 | 20, 23, 32 | syl2anc 584 |
. . . . . 6
⊢ (𝑥 ∈ ℋ →
(normℎ‘((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) ≤
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥)))) |
| 34 | 31, 33 | eqbrtrd 5147 |
. . . . 5
⊢ (𝑥 ∈ ℋ →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ≤
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥)))) |
| 35 | 34 | adantr 480 |
. . . 4
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ≤
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥)))) |
| 36 | | nmoplb 31873 |
. . . . . 6
⊢ ((𝑆: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑆‘𝑥)) ≤ (normop‘𝑆)) |
| 37 | 3, 36 | mp3an1 1449 |
. . . . 5
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑆‘𝑥)) ≤ (normop‘𝑆)) |
| 38 | | nmoplb 31873 |
. . . . . 6
⊢ ((𝑇: ℋ⟶ ℋ ∧
𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) |
| 39 | 6, 38 | mp3an1 1449 |
. . . . 5
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) |
| 40 | | le2add 11728 |
. . . . . . . 8
⊢
((((normℎ‘(𝑆‘𝑥)) ∈ ℝ ∧
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) ∧
((normop‘𝑆) ∈ ℝ ∧
(normop‘𝑇)
∈ ℝ)) → (((normℎ‘(𝑆‘𝑥)) ≤ (normop‘𝑆) ∧
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) →
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥))) ≤ ((normop‘𝑆) +
(normop‘𝑇)))) |
| 41 | 9, 11, 40 | mpanr12 705 |
. . . . . . 7
⊢
(((normℎ‘(𝑆‘𝑥)) ∈ ℝ ∧
(normℎ‘(𝑇‘𝑥)) ∈ ℝ) →
(((normℎ‘(𝑆‘𝑥)) ≤ (normop‘𝑆) ∧
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) →
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥))) ≤ ((normop‘𝑆) +
(normop‘𝑇)))) |
| 42 | 22, 25, 41 | syl2anc 584 |
. . . . . 6
⊢ (𝑥 ∈ ℋ →
(((normℎ‘(𝑆‘𝑥)) ≤ (normop‘𝑆) ∧
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) →
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥))) ≤ ((normop‘𝑆) +
(normop‘𝑇)))) |
| 43 | 42 | adantr 480 |
. . . . 5
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(((normℎ‘(𝑆‘𝑥)) ≤ (normop‘𝑆) ∧
(normℎ‘(𝑇‘𝑥)) ≤ (normop‘𝑇)) →
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥))) ≤ ((normop‘𝑆) +
(normop‘𝑇)))) |
| 44 | 37, 39, 43 | mp2and 699 |
. . . 4
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
((normℎ‘(𝑆‘𝑥)) + (normℎ‘(𝑇‘𝑥))) ≤ ((normop‘𝑆) +
(normop‘𝑇))) |
| 45 | 19, 27, 28, 35, 44 | letrd 11401 |
. . 3
⊢ ((𝑥 ∈ ℋ ∧
(normℎ‘𝑥) ≤ 1) →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop‘𝑆) +
(normop‘𝑇))) |
| 46 | 45 | ex 412 |
. 2
⊢ (𝑥 ∈ ℋ →
((normℎ‘𝑥) ≤ 1 →
(normℎ‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop‘𝑆) +
(normop‘𝑇)))) |
| 47 | 15, 46 | mprgbir 3057 |
1
⊢
(normop‘(𝑆 +op 𝑇)) ≤ ((normop‘𝑆) +
(normop‘𝑇)) |