HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoptrii Structured version   Visualization version   GIF version

Theorem nmoptrii 32074
Description: Triangle inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmoptrii (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))

Proof of Theorem nmoptrii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . 5 𝑆 ∈ BndLinOp
2 bdopf 31842 . . . . 5 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . 4 𝑆: ℋ⟶ ℋ
4 nmoptri.2 . . . . 5 𝑇 ∈ BndLinOp
5 bdopf 31842 . . . . 5 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
64, 5ax-mp 5 . . . 4 𝑇: ℋ⟶ ℋ
73, 6hoaddcli 31748 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
8 nmopre 31850 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
91, 8ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
10 nmopre 31850 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
114, 10ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
129, 11readdcli 11127 . . . 4 ((normop𝑆) + (normop𝑇)) ∈ ℝ
1312rexri 11170 . . 3 ((normop𝑆) + (normop𝑇)) ∈ ℝ*
14 nmopub 31888 . . 3 (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) + (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))))
157, 13, 14mp2an 692 . 2 ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
163, 6hoscli 31742 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) ∈ ℋ)
17 normcl 31105 . . . . . 6 (((𝑆 +op 𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1816, 17syl 17 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1918adantr 480 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
203ffvelcdmi 7016 . . . . . . 7 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
21 normcl 31105 . . . . . . 7 ((𝑆𝑥) ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
236ffvelcdmi 7016 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
24 normcl 31105 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2523, 24syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2622, 25readdcld 11141 . . . . 5 (𝑥 ∈ ℋ → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2726adantr 480 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2812a1i 11 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑆) + (normop𝑇)) ∈ ℝ)
29 hosval 31720 . . . . . . . 8 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
303, 6, 29mp3an12 1453 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
3130fveq2d 6826 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) = (norm‘((𝑆𝑥) + (𝑇𝑥))))
32 norm-ii 31118 . . . . . . 7 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3320, 23, 32syl2anc 584 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3431, 33eqbrtrd 5111 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3534adantr 480 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
36 nmoplb 31887 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
373, 36mp3an1 1450 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
38 nmoplb 31887 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
396, 38mp3an1 1450 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
40 le2add 11599 . . . . . . . 8 ((((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) ∧ ((normop𝑆) ∈ ℝ ∧ (normop𝑇) ∈ ℝ)) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
419, 11, 40mpanr12 705 . . . . . . 7 (((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4222, 25, 41syl2anc 584 . . . . . 6 (𝑥 ∈ ℋ → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4342adantr 480 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4437, 39, 43mp2and 699 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇)))
4519, 27, 28, 35, 44letrd 11270 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))
4645ex 412 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
4715, 46mprgbir 3054 1 (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5089  wf 6477  cfv 6481  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009  *cxr 11145  cle 11147  chba 30899   + cva 30900  normcno 30903   +op chos 30918  normopcnop 30925  BndLinOpcbo 30928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-grpo 30473  df-gid 30474  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-nmcv 30580  df-hnorm 30948  df-hba 30949  df-hvsub 30951  df-hosum 31710  df-nmop 31819  df-lnop 31821  df-bdop 31822
This theorem is referenced by:  bdophsi  32076  nmoptri2i  32079  unierri  32084
  Copyright terms: Public domain W3C validator