HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoptrii Structured version   Visualization version   GIF version

Theorem nmoptrii 30175
Description: Triangle inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmoptrii (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))

Proof of Theorem nmoptrii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . 5 𝑆 ∈ BndLinOp
2 bdopf 29943 . . . . 5 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . 4 𝑆: ℋ⟶ ℋ
4 nmoptri.2 . . . . 5 𝑇 ∈ BndLinOp
5 bdopf 29943 . . . . 5 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
64, 5ax-mp 5 . . . 4 𝑇: ℋ⟶ ℋ
73, 6hoaddcli 29849 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
8 nmopre 29951 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
91, 8ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
10 nmopre 29951 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
114, 10ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
129, 11readdcli 10848 . . . 4 ((normop𝑆) + (normop𝑇)) ∈ ℝ
1312rexri 10891 . . 3 ((normop𝑆) + (normop𝑇)) ∈ ℝ*
14 nmopub 29989 . . 3 (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) + (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))))
157, 13, 14mp2an 692 . 2 ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
163, 6hoscli 29843 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) ∈ ℋ)
17 normcl 29206 . . . . . 6 (((𝑆 +op 𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1816, 17syl 17 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1918adantr 484 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
203ffvelrni 6903 . . . . . . 7 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
21 normcl 29206 . . . . . . 7 ((𝑆𝑥) ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
236ffvelrni 6903 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
24 normcl 29206 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2523, 24syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2622, 25readdcld 10862 . . . . 5 (𝑥 ∈ ℋ → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2726adantr 484 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2812a1i 11 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑆) + (normop𝑇)) ∈ ℝ)
29 hosval 29821 . . . . . . . 8 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
303, 6, 29mp3an12 1453 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
3130fveq2d 6721 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) = (norm‘((𝑆𝑥) + (𝑇𝑥))))
32 norm-ii 29219 . . . . . . 7 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3320, 23, 32syl2anc 587 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3431, 33eqbrtrd 5075 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3534adantr 484 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
36 nmoplb 29988 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
373, 36mp3an1 1450 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
38 nmoplb 29988 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
396, 38mp3an1 1450 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
40 le2add 11314 . . . . . . . 8 ((((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) ∧ ((normop𝑆) ∈ ℝ ∧ (normop𝑇) ∈ ℝ)) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
419, 11, 40mpanr12 705 . . . . . . 7 (((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4222, 25, 41syl2anc 587 . . . . . 6 (𝑥 ∈ ℋ → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4342adantr 484 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4437, 39, 43mp2and 699 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇)))
4519, 27, 28, 35, 44letrd 10989 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))
4645ex 416 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
4715, 46mprgbir 3076 1 (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2110  wral 3061   class class class wbr 5053  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  1c1 10730   + caddc 10732  *cxr 10866  cle 10868  chba 29000   + cva 29001  normcno 29004   +op chos 29019  normopcnop 29026  BndLinOpcbo 29029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807  ax-hilex 29080  ax-hfvadd 29081  ax-hvcom 29082  ax-hvass 29083  ax-hv0cl 29084  ax-hvaddid 29085  ax-hfvmul 29086  ax-hvmulid 29087  ax-hvmulass 29088  ax-hvdistr1 29089  ax-hvdistr2 29090  ax-hvmul0 29091  ax-hfi 29160  ax-his1 29163  ax-his2 29164  ax-his3 29165  ax-his4 29166
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-n0 12091  df-z 12177  df-uz 12439  df-rp 12587  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-grpo 28574  df-gid 28575  df-ablo 28626  df-vc 28640  df-nv 28673  df-va 28676  df-ba 28677  df-sm 28678  df-0v 28679  df-nmcv 28681  df-hnorm 29049  df-hba 29050  df-hvsub 29052  df-hosum 29811  df-nmop 29920  df-lnop 29922  df-bdop 29923
This theorem is referenced by:  bdophsi  30177  nmoptri2i  30180  unierri  30185
  Copyright terms: Public domain W3C validator