HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmoptrii Structured version   Visualization version   GIF version

Theorem nmoptrii 32123
Description: Triangle inequality for the norms of bounded linear operators. (Contributed by NM, 10-Mar-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nmoptri.1 𝑆 ∈ BndLinOp
nmoptri.2 𝑇 ∈ BndLinOp
Assertion
Ref Expression
nmoptrii (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))

Proof of Theorem nmoptrii
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nmoptri.1 . . . . 5 𝑆 ∈ BndLinOp
2 bdopf 31891 . . . . 5 (𝑆 ∈ BndLinOp → 𝑆: ℋ⟶ ℋ)
31, 2ax-mp 5 . . . 4 𝑆: ℋ⟶ ℋ
4 nmoptri.2 . . . . 5 𝑇 ∈ BndLinOp
5 bdopf 31891 . . . . 5 (𝑇 ∈ BndLinOp → 𝑇: ℋ⟶ ℋ)
64, 5ax-mp 5 . . . 4 𝑇: ℋ⟶ ℋ
73, 6hoaddcli 31797 . . 3 (𝑆 +op 𝑇): ℋ⟶ ℋ
8 nmopre 31899 . . . . . 6 (𝑆 ∈ BndLinOp → (normop𝑆) ∈ ℝ)
91, 8ax-mp 5 . . . . 5 (normop𝑆) ∈ ℝ
10 nmopre 31899 . . . . . 6 (𝑇 ∈ BndLinOp → (normop𝑇) ∈ ℝ)
114, 10ax-mp 5 . . . . 5 (normop𝑇) ∈ ℝ
129, 11readdcli 11274 . . . 4 ((normop𝑆) + (normop𝑇)) ∈ ℝ
1312rexri 11317 . . 3 ((normop𝑆) + (normop𝑇)) ∈ ℝ*
14 nmopub 31937 . . 3 (((𝑆 +op 𝑇): ℋ⟶ ℋ ∧ ((normop𝑆) + (normop𝑇)) ∈ ℝ*) → ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))))
157, 13, 14mp2an 692 . 2 ((normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇)) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
163, 6hoscli 31791 . . . . . 6 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) ∈ ℋ)
17 normcl 31154 . . . . . 6 (((𝑆 +op 𝑇)‘𝑥) ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1816, 17syl 17 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
1918adantr 480 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ∈ ℝ)
203ffvelcdmi 7103 . . . . . . 7 (𝑥 ∈ ℋ → (𝑆𝑥) ∈ ℋ)
21 normcl 31154 . . . . . . 7 ((𝑆𝑥) ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
2220, 21syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑆𝑥)) ∈ ℝ)
236ffvelcdmi 7103 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
24 normcl 31154 . . . . . . 7 ((𝑇𝑥) ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2523, 24syl 17 . . . . . 6 (𝑥 ∈ ℋ → (norm‘(𝑇𝑥)) ∈ ℝ)
2622, 25readdcld 11288 . . . . 5 (𝑥 ∈ ℋ → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2726adantr 480 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ∈ ℝ)
2812a1i 11 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((normop𝑆) + (normop𝑇)) ∈ ℝ)
29 hosval 31769 . . . . . . . 8 ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
303, 6, 29mp3an12 1450 . . . . . . 7 (𝑥 ∈ ℋ → ((𝑆 +op 𝑇)‘𝑥) = ((𝑆𝑥) + (𝑇𝑥)))
3130fveq2d 6911 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) = (norm‘((𝑆𝑥) + (𝑇𝑥))))
32 norm-ii 31167 . . . . . . 7 (((𝑆𝑥) ∈ ℋ ∧ (𝑇𝑥) ∈ ℋ) → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3320, 23, 32syl2anc 584 . . . . . 6 (𝑥 ∈ ℋ → (norm‘((𝑆𝑥) + (𝑇𝑥))) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3431, 33eqbrtrd 5170 . . . . 5 (𝑥 ∈ ℋ → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
3534adantr 480 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))))
36 nmoplb 31936 . . . . . 6 ((𝑆: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
373, 36mp3an1 1447 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑆𝑥)) ≤ (normop𝑆))
38 nmoplb 31936 . . . . . 6 ((𝑇: ℋ⟶ ℋ ∧ 𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
396, 38mp3an1 1447 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘(𝑇𝑥)) ≤ (normop𝑇))
40 le2add 11743 . . . . . . . 8 ((((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) ∧ ((normop𝑆) ∈ ℝ ∧ (normop𝑇) ∈ ℝ)) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
419, 11, 40mpanr12 705 . . . . . . 7 (((norm‘(𝑆𝑥)) ∈ ℝ ∧ (norm‘(𝑇𝑥)) ∈ ℝ) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4222, 25, 41syl2anc 584 . . . . . 6 (𝑥 ∈ ℋ → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4342adantr 480 . . . . 5 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (((norm‘(𝑆𝑥)) ≤ (normop𝑆) ∧ (norm‘(𝑇𝑥)) ≤ (normop𝑇)) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇))))
4437, 39, 43mp2and 699 . . . 4 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → ((norm‘(𝑆𝑥)) + (norm‘(𝑇𝑥))) ≤ ((normop𝑆) + (normop𝑇)))
4519, 27, 28, 35, 44letrd 11416 . . 3 ((𝑥 ∈ ℋ ∧ (norm𝑥) ≤ 1) → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇)))
4645ex 412 . 2 (𝑥 ∈ ℋ → ((norm𝑥) ≤ 1 → (norm‘((𝑆 +op 𝑇)‘𝑥)) ≤ ((normop𝑆) + (normop𝑇))))
4715, 46mprgbir 3066 1 (normop‘(𝑆 +op 𝑇)) ≤ ((normop𝑆) + (normop𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059   class class class wbr 5148  wf 6559  cfv 6563  (class class class)co 7431  cr 11152  1c1 11154   + caddc 11156  *cxr 11292  cle 11294  chba 30948   + cva 30949  normcno 30952   +op chos 30967  normopcnop 30974  BndLinOpcbo 30977
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-hilex 31028  ax-hfvadd 31029  ax-hvcom 31030  ax-hvass 31031  ax-hv0cl 31032  ax-hvaddid 31033  ax-hfvmul 31034  ax-hvmulid 31035  ax-hvmulass 31036  ax-hvdistr1 31037  ax-hvdistr2 31038  ax-hvmul0 31039  ax-hfi 31108  ax-his1 31111  ax-his2 31112  ax-his3 31113  ax-his4 31114
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-grpo 30522  df-gid 30523  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-nmcv 30629  df-hnorm 30997  df-hba 30998  df-hvsub 31000  df-hosum 31759  df-nmop 31868  df-lnop 31870  df-bdop 31871
This theorem is referenced by:  bdophsi  32125  nmoptri2i  32128  unierri  32133
  Copyright terms: Public domain W3C validator