| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3lem | Structured version Visualization version GIF version | ||
| Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
| norm3lem.4 | ⊢ 𝐷 ∈ ℝ |
| Ref | Expression |
|---|---|
| norm3lem | ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | norm3dif.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
| 4 | 1, 2, 3 | norm3difi 31119 | . . 3 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| 5 | 1, 3 | hvsubcli 30993 | . . . . 5 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
| 6 | 5 | normcli 31103 | . . . 4 ⊢ (normℎ‘(𝐴 −ℎ 𝐶)) ∈ ℝ |
| 7 | 3, 2 | hvsubcli 30993 | . . . . 5 ⊢ (𝐶 −ℎ 𝐵) ∈ ℋ |
| 8 | 7 | normcli 31103 | . . . 4 ⊢ (normℎ‘(𝐶 −ℎ 𝐵)) ∈ ℝ |
| 9 | norm3lem.4 | . . . . 5 ⊢ 𝐷 ∈ ℝ | |
| 10 | 9 | rehalfcli 12365 | . . . 4 ⊢ (𝐷 / 2) ∈ ℝ |
| 11 | 6, 8, 10, 10 | lt2addi 11674 | . . 3 ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) |
| 12 | 1, 2 | hvsubcli 30993 | . . . . 5 ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ |
| 13 | 12 | normcli 31103 | . . . 4 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ∈ ℝ |
| 14 | 6, 8 | readdcli 11122 | . . . 4 ⊢ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ∈ ℝ |
| 15 | 10, 10 | readdcli 11122 | . . . 4 ⊢ ((𝐷 / 2) + (𝐷 / 2)) ∈ ℝ |
| 16 | 13, 14, 15 | lelttri 11235 | . . 3 ⊢ (((normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ∧ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) → (normℎ‘(𝐴 −ℎ 𝐵)) < ((𝐷 / 2) + (𝐷 / 2))) |
| 17 | 4, 11, 16 | sylancr 587 | . 2 ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < ((𝐷 / 2) + (𝐷 / 2))) |
| 18 | 10 | recni 11121 | . . . 4 ⊢ (𝐷 / 2) ∈ ℂ |
| 19 | 18 | 2timesi 12253 | . . 3 ⊢ (2 · (𝐷 / 2)) = ((𝐷 / 2) + (𝐷 / 2)) |
| 20 | 9 | recni 11121 | . . . 4 ⊢ 𝐷 ∈ ℂ |
| 21 | 2cn 12195 | . . . 4 ⊢ 2 ∈ ℂ | |
| 22 | 2ne0 12224 | . . . 4 ⊢ 2 ≠ 0 | |
| 23 | 20, 21, 22 | divcan2i 11859 | . . 3 ⊢ (2 · (𝐷 / 2)) = 𝐷 |
| 24 | 19, 23 | eqtr3i 2756 | . 2 ⊢ ((𝐷 / 2) + (𝐷 / 2)) = 𝐷 |
| 25 | 17, 24 | breqtrdi 5127 | 1 ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 ℝcr 11000 + caddc 11004 · cmul 11006 < clt 11141 ≤ cle 11142 / cdiv 11769 2c2 12175 ℋchba 30891 normℎcno 30895 −ℎ cmv 30897 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 ax-pre-sup 11079 ax-hfvadd 30972 ax-hvcom 30973 ax-hvass 30974 ax-hv0cl 30975 ax-hvaddid 30976 ax-hfvmul 30977 ax-hvmulid 30978 ax-hvmulass 30979 ax-hvdistr2 30981 ax-hvmul0 30982 ax-hfi 31051 ax-his1 31054 ax-his2 31055 ax-his3 31056 ax-his4 31057 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-sup 9321 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-div 11770 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-n0 12377 df-z 12464 df-uz 12728 df-rp 12886 df-seq 13904 df-exp 13964 df-cj 15001 df-re 15002 df-im 15003 df-sqrt 15137 df-abs 15138 df-hnorm 30940 df-hvsub 30943 |
| This theorem is referenced by: norm3lemt 31124 |
| Copyright terms: Public domain | W3C validator |