| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > norm3lem | Structured version Visualization version GIF version | ||
| Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| norm3dif.1 | ⊢ 𝐴 ∈ ℋ |
| norm3dif.2 | ⊢ 𝐵 ∈ ℋ |
| norm3dif.3 | ⊢ 𝐶 ∈ ℋ |
| norm3lem.4 | ⊢ 𝐷 ∈ ℝ |
| Ref | Expression |
|---|---|
| norm3lem | ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm3dif.1 | . . . 4 ⊢ 𝐴 ∈ ℋ | |
| 2 | norm3dif.2 | . . . 4 ⊢ 𝐵 ∈ ℋ | |
| 3 | norm3dif.3 | . . . 4 ⊢ 𝐶 ∈ ℋ | |
| 4 | 1, 2, 3 | norm3difi 31083 | . . 3 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) |
| 5 | 1, 3 | hvsubcli 30957 | . . . . 5 ⊢ (𝐴 −ℎ 𝐶) ∈ ℋ |
| 6 | 5 | normcli 31067 | . . . 4 ⊢ (normℎ‘(𝐴 −ℎ 𝐶)) ∈ ℝ |
| 7 | 3, 2 | hvsubcli 30957 | . . . . 5 ⊢ (𝐶 −ℎ 𝐵) ∈ ℋ |
| 8 | 7 | normcli 31067 | . . . 4 ⊢ (normℎ‘(𝐶 −ℎ 𝐵)) ∈ ℝ |
| 9 | norm3lem.4 | . . . . 5 ⊢ 𝐷 ∈ ℝ | |
| 10 | 9 | rehalfcli 12438 | . . . 4 ⊢ (𝐷 / 2) ∈ ℝ |
| 11 | 6, 8, 10, 10 | lt2addi 11747 | . . 3 ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) |
| 12 | 1, 2 | hvsubcli 30957 | . . . . 5 ⊢ (𝐴 −ℎ 𝐵) ∈ ℋ |
| 13 | 12 | normcli 31067 | . . . 4 ⊢ (normℎ‘(𝐴 −ℎ 𝐵)) ∈ ℝ |
| 14 | 6, 8 | readdcli 11196 | . . . 4 ⊢ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ∈ ℝ |
| 15 | 10, 10 | readdcli 11196 | . . . 4 ⊢ ((𝐷 / 2) + (𝐷 / 2)) ∈ ℝ |
| 16 | 13, 14, 15 | lelttri 11308 | . . 3 ⊢ (((normℎ‘(𝐴 −ℎ 𝐵)) ≤ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) ∧ ((normℎ‘(𝐴 −ℎ 𝐶)) + (normℎ‘(𝐶 −ℎ 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) → (normℎ‘(𝐴 −ℎ 𝐵)) < ((𝐷 / 2) + (𝐷 / 2))) |
| 17 | 4, 11, 16 | sylancr 587 | . 2 ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < ((𝐷 / 2) + (𝐷 / 2))) |
| 18 | 10 | recni 11195 | . . . 4 ⊢ (𝐷 / 2) ∈ ℂ |
| 19 | 18 | 2timesi 12326 | . . 3 ⊢ (2 · (𝐷 / 2)) = ((𝐷 / 2) + (𝐷 / 2)) |
| 20 | 9 | recni 11195 | . . . 4 ⊢ 𝐷 ∈ ℂ |
| 21 | 2cn 12268 | . . . 4 ⊢ 2 ∈ ℂ | |
| 22 | 2ne0 12297 | . . . 4 ⊢ 2 ≠ 0 | |
| 23 | 20, 21, 22 | divcan2i 11932 | . . 3 ⊢ (2 · (𝐷 / 2)) = 𝐷 |
| 24 | 19, 23 | eqtr3i 2755 | . 2 ⊢ ((𝐷 / 2) + (𝐷 / 2)) = 𝐷 |
| 25 | 17, 24 | breqtrdi 5151 | 1 ⊢ (((normℎ‘(𝐴 −ℎ 𝐶)) < (𝐷 / 2) ∧ (normℎ‘(𝐶 −ℎ 𝐵)) < (𝐷 / 2)) → (normℎ‘(𝐴 −ℎ 𝐵)) < 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 + caddc 11078 · cmul 11080 < clt 11215 ≤ cle 11216 / cdiv 11842 2c2 12248 ℋchba 30855 normℎcno 30859 −ℎ cmv 30861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-hfvadd 30936 ax-hvcom 30937 ax-hvass 30938 ax-hv0cl 30939 ax-hvaddid 30940 ax-hfvmul 30941 ax-hvmulid 30942 ax-hvmulass 30943 ax-hvdistr2 30945 ax-hvmul0 30946 ax-hfi 31015 ax-his1 31018 ax-his2 31019 ax-his3 31020 ax-his4 31021 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-hnorm 30904 df-hvsub 30907 |
| This theorem is referenced by: norm3lemt 31088 |
| Copyright terms: Public domain | W3C validator |