Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3lem Structured version   Visualization version   GIF version

Theorem norm3lem 28930
 Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
norm3lem.4 𝐷 ∈ ℝ
Assertion
Ref Expression
norm3lem (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷)

Proof of Theorem norm3lem
StepHypRef Expression
1 norm3dif.1 . . . 4 𝐴 ∈ ℋ
2 norm3dif.2 . . . 4 𝐵 ∈ ℋ
3 norm3dif.3 . . . 4 𝐶 ∈ ℋ
41, 2, 3norm3difi 28928 . . 3 (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
51, 3hvsubcli 28802 . . . . 5 (𝐴 𝐶) ∈ ℋ
65normcli 28912 . . . 4 (norm‘(𝐴 𝐶)) ∈ ℝ
73, 2hvsubcli 28802 . . . . 5 (𝐶 𝐵) ∈ ℋ
87normcli 28912 . . . 4 (norm‘(𝐶 𝐵)) ∈ ℝ
9 norm3lem.4 . . . . 5 𝐷 ∈ ℝ
109rehalfcli 11874 . . . 4 (𝐷 / 2) ∈ ℝ
116, 8, 10, 10lt2addi 11191 . . 3 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) < ((𝐷 / 2) + (𝐷 / 2)))
121, 2hvsubcli 28802 . . . . 5 (𝐴 𝐵) ∈ ℋ
1312normcli 28912 . . . 4 (norm‘(𝐴 𝐵)) ∈ ℝ
146, 8readdcli 10645 . . . 4 ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) ∈ ℝ
1510, 10readdcli 10645 . . . 4 ((𝐷 / 2) + (𝐷 / 2)) ∈ ℝ
1613, 14, 15lelttri 10756 . . 3 (((norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) ∧ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) → (norm‘(𝐴 𝐵)) < ((𝐷 / 2) + (𝐷 / 2)))
174, 11, 16sylancr 590 . 2 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < ((𝐷 / 2) + (𝐷 / 2)))
1810recni 10644 . . . 4 (𝐷 / 2) ∈ ℂ
19182timesi 11763 . . 3 (2 · (𝐷 / 2)) = ((𝐷 / 2) + (𝐷 / 2))
209recni 10644 . . . 4 𝐷 ∈ ℂ
21 2cn 11700 . . . 4 2 ∈ ℂ
22 2ne0 11729 . . . 4 2 ≠ 0
2320, 21, 22divcan2i 11372 . . 3 (2 · (𝐷 / 2)) = 𝐷
2419, 23eqtr3i 2847 . 2 ((𝐷 / 2) + (𝐷 / 2)) = 𝐷
2517, 24breqtrdi 5083 1 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∈ wcel 2114   class class class wbr 5042  ‘cfv 6334  (class class class)co 7140  ℝcr 10525   + caddc 10529   · cmul 10531   < clt 10664   ≤ cle 10665   / cdiv 11286  2c2 11680   ℋchba 28700  normℎcno 28704   −ℎ cmv 28706 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-hfvadd 28781  ax-hvcom 28782  ax-hvass 28783  ax-hv0cl 28784  ax-hvaddid 28785  ax-hfvmul 28786  ax-hvmulid 28787  ax-hvmulass 28788  ax-hvdistr2 28790  ax-hvmul0 28791  ax-hfi 28860  ax-his1 28863  ax-his2 28864  ax-his3 28865  ax-his4 28866 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-sup 8894  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14449  df-re 14450  df-im 14451  df-sqrt 14585  df-abs 14586  df-hnorm 28749  df-hvsub 28752 This theorem is referenced by:  norm3lemt  28933
 Copyright terms: Public domain W3C validator