HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  norm3lem Structured version   Visualization version   GIF version

Theorem norm3lem 31051
Description: Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
norm3dif.1 𝐴 ∈ ℋ
norm3dif.2 𝐵 ∈ ℋ
norm3dif.3 𝐶 ∈ ℋ
norm3lem.4 𝐷 ∈ ℝ
Assertion
Ref Expression
norm3lem (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷)

Proof of Theorem norm3lem
StepHypRef Expression
1 norm3dif.1 . . . 4 𝐴 ∈ ℋ
2 norm3dif.2 . . . 4 𝐵 ∈ ℋ
3 norm3dif.3 . . . 4 𝐶 ∈ ℋ
41, 2, 3norm3difi 31049 . . 3 (norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵)))
51, 3hvsubcli 30923 . . . . 5 (𝐴 𝐶) ∈ ℋ
65normcli 31033 . . . 4 (norm‘(𝐴 𝐶)) ∈ ℝ
73, 2hvsubcli 30923 . . . . 5 (𝐶 𝐵) ∈ ℋ
87normcli 31033 . . . 4 (norm‘(𝐶 𝐵)) ∈ ℝ
9 norm3lem.4 . . . . 5 𝐷 ∈ ℝ
109rehalfcli 12407 . . . 4 (𝐷 / 2) ∈ ℝ
116, 8, 10, 10lt2addi 11716 . . 3 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) < ((𝐷 / 2) + (𝐷 / 2)))
121, 2hvsubcli 30923 . . . . 5 (𝐴 𝐵) ∈ ℋ
1312normcli 31033 . . . 4 (norm‘(𝐴 𝐵)) ∈ ℝ
146, 8readdcli 11165 . . . 4 ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) ∈ ℝ
1510, 10readdcli 11165 . . . 4 ((𝐷 / 2) + (𝐷 / 2)) ∈ ℝ
1613, 14, 15lelttri 11277 . . 3 (((norm‘(𝐴 𝐵)) ≤ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) ∧ ((norm‘(𝐴 𝐶)) + (norm‘(𝐶 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) → (norm‘(𝐴 𝐵)) < ((𝐷 / 2) + (𝐷 / 2)))
174, 11, 16sylancr 587 . 2 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < ((𝐷 / 2) + (𝐷 / 2)))
1810recni 11164 . . . 4 (𝐷 / 2) ∈ ℂ
19182timesi 12295 . . 3 (2 · (𝐷 / 2)) = ((𝐷 / 2) + (𝐷 / 2))
209recni 11164 . . . 4 𝐷 ∈ ℂ
21 2cn 12237 . . . 4 2 ∈ ℂ
22 2ne0 12266 . . . 4 2 ≠ 0
2320, 21, 22divcan2i 11901 . . 3 (2 · (𝐷 / 2)) = 𝐷
2419, 23eqtr3i 2754 . 2 ((𝐷 / 2) + (𝐷 / 2)) = 𝐷
2517, 24breqtrdi 5143 1 (((norm‘(𝐴 𝐶)) < (𝐷 / 2) ∧ (norm‘(𝐶 𝐵)) < (𝐷 / 2)) → (norm‘(𝐴 𝐵)) < 𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043   + caddc 11047   · cmul 11049   < clt 11184  cle 11185   / cdiv 11811  2c2 12217  chba 30821  normcno 30825   cmv 30827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-hfvadd 30902  ax-hvcom 30903  ax-hvass 30904  ax-hv0cl 30905  ax-hvaddid 30906  ax-hfvmul 30907  ax-hvmulid 30908  ax-hvmulass 30909  ax-hvdistr2 30911  ax-hvmul0 30912  ax-hfi 30981  ax-his1 30984  ax-his2 30985  ax-his3 30986  ax-his4 30987
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-n0 12419  df-z 12506  df-uz 12770  df-rp 12928  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-hnorm 30870  df-hvsub 30873
This theorem is referenced by:  norm3lemt  31054
  Copyright terms: Public domain W3C validator