Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zm1nn Structured version   Visualization version   GIF version

Theorem zm1nn 44794
Description: An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018.)
Assertion
Ref Expression
zm1nn ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))

Proof of Theorem zm1nn
StepHypRef Expression
1 0red 10978 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 0 ∈ ℝ)
2 simpl 483 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐽 ∈ ℝ)
3 zre 12323 . . . . . . . . . 10 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4 nn0re 12242 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5 resubcl 11285 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿𝑁) ∈ ℝ)
63, 4, 5syl2anr 597 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿𝑁) ∈ ℝ)
76adantl 482 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐿𝑁) ∈ ℝ)
8 peano2rem 11288 . . . . . . . 8 ((𝐿𝑁) ∈ ℝ → ((𝐿𝑁) − 1) ∈ ℝ)
97, 8syl 17 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝐿𝑁) − 1) ∈ ℝ)
10 lelttr 11065 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ ((𝐿𝑁) − 1) ∈ ℝ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
111, 2, 9, 10syl3anc 1370 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
12 1red 10976 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 1 ∈ ℝ)
1312, 6posdifd 11562 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) ↔ 0 < ((𝐿𝑁) − 1)))
144adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
153adantl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1612, 14, 15ltaddsubd 11575 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 ↔ 1 < (𝐿𝑁)))
17 elnn0z 12332 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
18 0red 10978 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
19 zre 12323 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019adantr 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
21 1red 10976 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 1 ∈ ℝ)
2218, 20, 21leadd2d 11570 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 ↔ (1 + 0) ≤ (1 + 𝑁)))
23 1re 10975 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
24 0re 10977 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
2523, 24readdcli 10990 . . . . . . . . . . . . . . . . 17 (1 + 0) ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 0) ∈ ℝ)
27 1red 10976 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 1 ∈ ℝ)
2827, 19readdcld 11004 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (1 + 𝑁) ∈ ℝ)
2928adantr 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 𝑁) ∈ ℝ)
303adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
31 lelttr 11065 . . . . . . . . . . . . . . . 16 (((1 + 0) ∈ ℝ ∧ (1 + 𝑁) ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
3226, 29, 30, 31syl3anc 1370 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
33 peano2zm 12363 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → (𝐿 − 1) ∈ ℤ)
3433adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℤ)
3534adantr 481 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℤ)
36 1red 10976 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 1 ∈ ℝ)
37 0red 10978 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 0 ∈ ℝ)
3836, 37, 3ltaddsub2d 11576 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 ↔ 0 < (𝐿 − 1)))
3938biimpd 228 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4039adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4140imp 407 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → 0 < (𝐿 − 1))
42 elnnz 12329 . . . . . . . . . . . . . . . . 17 ((𝐿 − 1) ∈ ℕ ↔ ((𝐿 − 1) ∈ ℤ ∧ 0 < (𝐿 − 1)))
4335, 41, 42sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℕ)
4443ex 413 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → (𝐿 − 1) ∈ ℕ))
4532, 44syld 47 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (𝐿 − 1) ∈ ℕ))
4645expd 416 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) ≤ (1 + 𝑁) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4722, 46sylbid 239 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4847impancom 452 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4917, 48sylbi 216 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
5049imp 407 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ))
5116, 50sylbird 259 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) → (𝐿 − 1) ∈ ℕ))
5213, 51sylbird 259 . . . . . . 7 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5352adantl 482 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5411, 53syld 47 . . . . 5 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
5554ex 413 . . . 4 (𝐽 ∈ ℝ → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ)))
5655com23 86 . . 3 (𝐽 ∈ ℝ → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)))
57563impib 1115 . 2 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ))
5857com12 32 1 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106   class class class wbr 5074  (class class class)co 7275  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator