Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zm1nn Structured version   Visualization version   GIF version

Theorem zm1nn 47276
Description: An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018.)
Assertion
Ref Expression
zm1nn ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))

Proof of Theorem zm1nn
StepHypRef Expression
1 0red 11153 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 0 ∈ ℝ)
2 simpl 482 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐽 ∈ ℝ)
3 zre 12509 . . . . . . . . . 10 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4 nn0re 12427 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5 resubcl 11462 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿𝑁) ∈ ℝ)
63, 4, 5syl2anr 597 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿𝑁) ∈ ℝ)
76adantl 481 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐿𝑁) ∈ ℝ)
8 peano2rem 11465 . . . . . . . 8 ((𝐿𝑁) ∈ ℝ → ((𝐿𝑁) − 1) ∈ ℝ)
97, 8syl 17 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝐿𝑁) − 1) ∈ ℝ)
10 lelttr 11240 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ ((𝐿𝑁) − 1) ∈ ℝ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
111, 2, 9, 10syl3anc 1373 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
12 1red 11151 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 1 ∈ ℝ)
1312, 6posdifd 11741 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) ↔ 0 < ((𝐿𝑁) − 1)))
144adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
153adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1612, 14, 15ltaddsubd 11754 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 ↔ 1 < (𝐿𝑁)))
17 elnn0z 12518 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
18 0red 11153 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
19 zre 12509 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
21 1red 11151 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 1 ∈ ℝ)
2218, 20, 21leadd2d 11749 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 ↔ (1 + 0) ≤ (1 + 𝑁)))
23 1re 11150 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
24 0re 11152 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
2523, 24readdcli 11165 . . . . . . . . . . . . . . . . 17 (1 + 0) ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 0) ∈ ℝ)
27 1red 11151 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 1 ∈ ℝ)
2827, 19readdcld 11179 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (1 + 𝑁) ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 𝑁) ∈ ℝ)
303adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
31 lelttr 11240 . . . . . . . . . . . . . . . 16 (((1 + 0) ∈ ℝ ∧ (1 + 𝑁) ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
3226, 29, 30, 31syl3anc 1373 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
33 peano2zm 12552 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → (𝐿 − 1) ∈ ℤ)
3433adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℤ)
3534adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℤ)
36 1red 11151 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 1 ∈ ℝ)
37 0red 11153 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 0 ∈ ℝ)
3836, 37, 3ltaddsub2d 11755 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 ↔ 0 < (𝐿 − 1)))
3938biimpd 229 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4039adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4140imp 406 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → 0 < (𝐿 − 1))
42 elnnz 12515 . . . . . . . . . . . . . . . . 17 ((𝐿 − 1) ∈ ℕ ↔ ((𝐿 − 1) ∈ ℤ ∧ 0 < (𝐿 − 1)))
4335, 41, 42sylanbrc 583 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℕ)
4443ex 412 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → (𝐿 − 1) ∈ ℕ))
4532, 44syld 47 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (𝐿 − 1) ∈ ℕ))
4645expd 415 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) ≤ (1 + 𝑁) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4722, 46sylbid 240 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4847impancom 451 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4917, 48sylbi 217 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
5049imp 406 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ))
5116, 50sylbird 260 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) → (𝐿 − 1) ∈ ℕ))
5213, 51sylbird 260 . . . . . . 7 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5352adantl 481 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5411, 53syld 47 . . . . 5 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
5554ex 412 . . . 4 (𝐽 ∈ ℝ → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ)))
5655com23 86 . . 3 (𝐽 ∈ ℝ → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)))
57563impib 1116 . 2 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ))
5857com12 32 1 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109   class class class wbr 5102  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381  cn 12162  0cn0 12418  cz 12505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator