Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zm1nn Structured version   Visualization version   GIF version

Theorem zm1nn 47217
Description: An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018.)
Assertion
Ref Expression
zm1nn ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))

Proof of Theorem zm1nn
StepHypRef Expression
1 0red 11293 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 0 ∈ ℝ)
2 simpl 482 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐽 ∈ ℝ)
3 zre 12643 . . . . . . . . . 10 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4 nn0re 12562 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5 resubcl 11600 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿𝑁) ∈ ℝ)
63, 4, 5syl2anr 596 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿𝑁) ∈ ℝ)
76adantl 481 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐿𝑁) ∈ ℝ)
8 peano2rem 11603 . . . . . . . 8 ((𝐿𝑁) ∈ ℝ → ((𝐿𝑁) − 1) ∈ ℝ)
97, 8syl 17 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝐿𝑁) − 1) ∈ ℝ)
10 lelttr 11380 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ ((𝐿𝑁) − 1) ∈ ℝ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
111, 2, 9, 10syl3anc 1371 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
12 1red 11291 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 1 ∈ ℝ)
1312, 6posdifd 11877 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) ↔ 0 < ((𝐿𝑁) − 1)))
144adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
153adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1612, 14, 15ltaddsubd 11890 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 ↔ 1 < (𝐿𝑁)))
17 elnn0z 12652 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
18 0red 11293 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
19 zre 12643 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
21 1red 11291 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 1 ∈ ℝ)
2218, 20, 21leadd2d 11885 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 ↔ (1 + 0) ≤ (1 + 𝑁)))
23 1re 11290 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
24 0re 11292 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
2523, 24readdcli 11305 . . . . . . . . . . . . . . . . 17 (1 + 0) ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 0) ∈ ℝ)
27 1red 11291 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 1 ∈ ℝ)
2827, 19readdcld 11319 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (1 + 𝑁) ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 𝑁) ∈ ℝ)
303adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
31 lelttr 11380 . . . . . . . . . . . . . . . 16 (((1 + 0) ∈ ℝ ∧ (1 + 𝑁) ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
3226, 29, 30, 31syl3anc 1371 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
33 peano2zm 12686 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → (𝐿 − 1) ∈ ℤ)
3433adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℤ)
3534adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℤ)
36 1red 11291 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 1 ∈ ℝ)
37 0red 11293 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 0 ∈ ℝ)
3836, 37, 3ltaddsub2d 11891 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 ↔ 0 < (𝐿 − 1)))
3938biimpd 229 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4039adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4140imp 406 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → 0 < (𝐿 − 1))
42 elnnz 12649 . . . . . . . . . . . . . . . . 17 ((𝐿 − 1) ∈ ℕ ↔ ((𝐿 − 1) ∈ ℤ ∧ 0 < (𝐿 − 1)))
4335, 41, 42sylanbrc 582 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℕ)
4443ex 412 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → (𝐿 − 1) ∈ ℕ))
4532, 44syld 47 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (𝐿 − 1) ∈ ℕ))
4645expd 415 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) ≤ (1 + 𝑁) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4722, 46sylbid 240 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4847impancom 451 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4917, 48sylbi 217 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
5049imp 406 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ))
5116, 50sylbird 260 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) → (𝐿 − 1) ∈ ℕ))
5213, 51sylbird 260 . . . . . . 7 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5352adantl 481 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5411, 53syld 47 . . . . 5 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
5554ex 412 . . . 4 (𝐽 ∈ ℝ → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ)))
5655com23 86 . . 3 (𝐽 ∈ ℝ → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)))
57563impib 1116 . 2 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ))
5857com12 32 1 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   < clt 11324  cle 11325  cmin 11520  cn 12293  0cn0 12553  cz 12639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator