Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zm1nn Structured version   Visualization version   GIF version

Theorem zm1nn 46556
Description: An integer minus 1 is positive under certain circumstances. (Contributed by Alexander van der Vekens, 9-Jun-2018.)
Assertion
Ref Expression
zm1nn ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))

Proof of Theorem zm1nn
StepHypRef Expression
1 0red 11216 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 0 ∈ ℝ)
2 simpl 482 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → 𝐽 ∈ ℝ)
3 zre 12561 . . . . . . . . . 10 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
4 nn0re 12480 . . . . . . . . . 10 (𝑁 ∈ ℕ0𝑁 ∈ ℝ)
5 resubcl 11523 . . . . . . . . . 10 ((𝐿 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐿𝑁) ∈ ℝ)
63, 4, 5syl2anr 596 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿𝑁) ∈ ℝ)
76adantl 481 . . . . . . . 8 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (𝐿𝑁) ∈ ℝ)
8 peano2rem 11526 . . . . . . . 8 ((𝐿𝑁) ∈ ℝ → ((𝐿𝑁) − 1) ∈ ℝ)
97, 8syl 17 . . . . . . 7 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((𝐿𝑁) − 1) ∈ ℝ)
10 lelttr 11303 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐽 ∈ ℝ ∧ ((𝐿𝑁) − 1) ∈ ℝ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
111, 2, 9, 10syl3anc 1368 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → 0 < ((𝐿𝑁) − 1)))
12 1red 11214 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 1 ∈ ℝ)
1312, 6posdifd 11800 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) ↔ 0 < ((𝐿𝑁) − 1)))
144adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
153adantl 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1612, 14, 15ltaddsubd 11813 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 ↔ 1 < (𝐿𝑁)))
17 elnn0z 12570 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℤ ∧ 0 ≤ 𝑁))
18 0red 11216 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 0 ∈ ℝ)
19 zre 12561 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2019adantr 480 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝑁 ∈ ℝ)
21 1red 11214 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 1 ∈ ℝ)
2218, 20, 21leadd2d 11808 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 ↔ (1 + 0) ≤ (1 + 𝑁)))
23 1re 11213 . . . . . . . . . . . . . . . . . 18 1 ∈ ℝ
24 0re 11215 . . . . . . . . . . . . . . . . . 18 0 ∈ ℝ
2523, 24readdcli 11228 . . . . . . . . . . . . . . . . 17 (1 + 0) ∈ ℝ
2625a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 0) ∈ ℝ)
27 1red 11214 . . . . . . . . . . . . . . . . . 18 (𝑁 ∈ ℤ → 1 ∈ ℝ)
2827, 19readdcld 11242 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → (1 + 𝑁) ∈ ℝ)
2928adantr 480 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (1 + 𝑁) ∈ ℝ)
303adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
31 lelttr 11303 . . . . . . . . . . . . . . . 16 (((1 + 0) ∈ ℝ ∧ (1 + 𝑁) ∈ ℝ ∧ 𝐿 ∈ ℝ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
3226, 29, 30, 31syl3anc 1368 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (1 + 0) < 𝐿))
33 peano2zm 12604 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → (𝐿 − 1) ∈ ℤ)
3433adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℤ)
3534adantr 480 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℤ)
36 1red 11214 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 1 ∈ ℝ)
37 0red 11216 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℤ → 0 ∈ ℝ)
3836, 37, 3ltaddsub2d 11814 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 ↔ 0 < (𝐿 − 1)))
3938biimpd 228 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℤ → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4039adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → 0 < (𝐿 − 1)))
4140imp 406 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → 0 < (𝐿 − 1))
42 elnnz 12567 . . . . . . . . . . . . . . . . 17 ((𝐿 − 1) ∈ ℕ ↔ ((𝐿 − 1) ∈ ℤ ∧ 0 < (𝐿 − 1)))
4335, 41, 42sylanbrc 582 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) ∧ (1 + 0) < 𝐿) → (𝐿 − 1) ∈ ℕ)
4443ex 412 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) < 𝐿 → (𝐿 − 1) ∈ ℕ))
4532, 44syld 47 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (((1 + 0) ≤ (1 + 𝑁) ∧ (1 + 𝑁) < 𝐿) → (𝐿 − 1) ∈ ℕ))
4645expd 415 . . . . . . . . . . . . 13 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → ((1 + 0) ≤ (1 + 𝑁) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4722, 46sylbid 239 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (0 ≤ 𝑁 → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4847impancom 451 . . . . . . . . . . 11 ((𝑁 ∈ ℤ ∧ 0 ≤ 𝑁) → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
4917, 48sylbi 216 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (𝐿 ∈ ℤ → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ)))
5049imp 406 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((1 + 𝑁) < 𝐿 → (𝐿 − 1) ∈ ℕ))
5116, 50sylbird 260 . . . . . . . 8 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (1 < (𝐿𝑁) → (𝐿 − 1) ∈ ℕ))
5213, 51sylbird 260 . . . . . . 7 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5352adantl 481 . . . . . 6 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → (0 < ((𝐿𝑁) − 1) → (𝐿 − 1) ∈ ℕ))
5411, 53syld 47 . . . . 5 ((𝐽 ∈ ℝ ∧ (𝑁 ∈ ℕ0𝐿 ∈ ℤ)) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
5554ex 412 . . . 4 (𝐽 ∈ ℝ → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ)))
5655com23 86 . . 3 (𝐽 ∈ ℝ → ((0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ)))
57563impib 1113 . 2 ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → (𝐿 − 1) ∈ ℕ))
5857com12 32 1 ((𝑁 ∈ ℕ0𝐿 ∈ ℤ) → ((𝐽 ∈ ℝ ∧ 0 ≤ 𝐽𝐽 < ((𝐿𝑁) − 1)) → (𝐿 − 1) ∈ ℕ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084  wcel 2098   class class class wbr 5139  (class class class)co 7402  cr 11106  0cc0 11107  1c1 11108   + caddc 11110   < clt 11247  cle 11248  cmin 11443  cn 12211  0cn0 12471  cz 12557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-z 12558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator