| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12263 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 12289 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 11181 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11196 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2825 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℝcr 11074 1c1 11076 + caddc 11078 8c8 12254 9c9 12255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 |
| This theorem is referenced by: 7lt9 12388 6lt9 12389 5lt9 12390 4lt9 12391 3lt9 12392 2lt9 12393 1lt9 12394 10re 12675 9lt10 12787 8lt10 12788 0.999... 15854 cos2bnd 16163 sincos2sgn 16169 slotsdifplendx 17345 dsndxntsetndx 17363 unifndxntsetndx 17370 2logb9irr 26712 sqrt2cxp2logb9e3 26716 log2tlbnd 26862 bposlem4 27205 bposlem5 27206 bposlem7 27208 bposlem8 27209 bposlem9 27210 ex-fv 30379 dp2lt10 32811 hgt750lem 34649 hgt750lem2 34650 hgt750leme 34656 problem5 35663 60gcd7e1 42000 lcmineqlem23 42046 3lexlogpow5ineq1 42049 3lexlogpow5ineq2 42050 3lexlogpow5ineq4 42051 3lexlogpow5ineq3 42052 3lexlogpow2ineq2 42054 3lexlogpow5ineq5 42055 aks4d1lem1 42057 aks4d1p1 42071 aks4d1p6 42076 aks4d1p7d1 42077 aks4d1p7 42078 aks4d1p8 42082 9rp 42299 31prm 47602 2exp340mod341 47738 341fppr2 47739 9fppr8 47742 nfermltl8rev 47747 nfermltl2rev 47748 wtgoldbnnsum4prm 47807 bgoldbnnsum3prm 47809 bgoldbtbndlem1 47810 ackval42 48689 |
| Copyright terms: Public domain | W3C validator |