Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version |
Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
9re | ⊢ 9 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 11973 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8re 11999 | . . 3 ⊢ 8 ∈ ℝ | |
3 | 1re 10906 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10921 | . 2 ⊢ (8 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 9 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 1c1 10803 + caddc 10805 8c8 11964 9c9 11965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 |
This theorem is referenced by: 7lt9 12103 6lt9 12104 5lt9 12105 4lt9 12106 3lt9 12107 2lt9 12108 1lt9 12109 10re 12385 9lt10 12497 8lt10 12498 0.999... 15521 cos2bnd 15825 sincos2sgn 15831 dsndxntsetndx 17024 unifndxntsetndx 17030 cnfldfun 20522 tuslemOLD 23327 setsmsds 23537 tnglemOLD 23703 tngdsOLD 23718 2logb9irr 25850 sqrt2cxp2logb9e3 25854 log2tlbnd 26000 bposlem4 26340 bposlem5 26341 bposlem7 26343 bposlem8 26344 bposlem9 26345 ex-fv 28708 dp2lt10 31060 hgt750lem 32531 hgt750lem2 32532 hgt750leme 32538 problem5 33527 60gcd7e1 39941 lcmineqlem23 39987 3lexlogpow5ineq1 39990 3lexlogpow5ineq2 39991 3lexlogpow5ineq4 39992 3lexlogpow5ineq3 39993 3lexlogpow2ineq2 39995 3lexlogpow5ineq5 39996 aks4d1lem1 39998 aks4d1p1 40012 aks4d1p6 40017 aks4d1p7d1 40018 aks4d1p7 40019 aks4d1p8 40023 31prm 44937 2exp340mod341 45073 341fppr2 45074 9fppr8 45077 nfermltl8rev 45082 nfermltl2rev 45083 wtgoldbnnsum4prm 45142 bgoldbnnsum3prm 45144 bgoldbtbndlem1 45145 ackval42 45930 |
Copyright terms: Public domain | W3C validator |