| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12232 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 12258 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 11150 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11165 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 1c1 11045 + caddc 11047 8c8 12223 9c9 12224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 |
| This theorem is referenced by: 7lt9 12357 6lt9 12358 5lt9 12359 4lt9 12360 3lt9 12361 2lt9 12362 1lt9 12363 10re 12644 9lt10 12756 8lt10 12757 0.999... 15823 cos2bnd 16132 sincos2sgn 16138 slotsdifplendx 17314 dsndxntsetndx 17332 unifndxntsetndx 17339 2logb9irr 26738 sqrt2cxp2logb9e3 26742 log2tlbnd 26888 bposlem4 27231 bposlem5 27232 bposlem7 27234 bposlem8 27235 bposlem9 27236 ex-fv 30422 dp2lt10 32854 hgt750lem 34635 hgt750lem2 34636 hgt750leme 34642 problem5 35649 60gcd7e1 41986 lcmineqlem23 42032 3lexlogpow5ineq1 42035 3lexlogpow5ineq2 42036 3lexlogpow5ineq4 42037 3lexlogpow5ineq3 42038 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 aks4d1lem1 42043 aks4d1p1 42057 aks4d1p6 42062 aks4d1p7d1 42063 aks4d1p7 42064 aks4d1p8 42068 9rp 42285 31prm 47591 2exp340mod341 47727 341fppr2 47728 9fppr8 47731 nfermltl8rev 47736 nfermltl2rev 47737 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 bgoldbtbndlem1 47799 ackval42 48678 |
| Copyright terms: Public domain | W3C validator |