Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version |
Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
9re | ⊢ 9 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12043 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8re 12069 | . . 3 ⊢ 8 ∈ ℝ | |
3 | 1re 10975 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10990 | . 2 ⊢ (8 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2835 | 1 ⊢ 9 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 1c1 10872 + caddc 10874 8c8 12034 9c9 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 |
This theorem is referenced by: 7lt9 12173 6lt9 12174 5lt9 12175 4lt9 12176 3lt9 12177 2lt9 12178 1lt9 12179 10re 12456 9lt10 12568 8lt10 12569 0.999... 15593 cos2bnd 15897 sincos2sgn 15903 slotsdifplendx 17085 dsndxntsetndx 17103 unifndxntsetndx 17110 cnfldfunALTOLD 20611 tuslemOLD 23419 setsmsdsOLD 23631 tnglemOLD 23797 tngdsOLD 23812 2logb9irr 25945 sqrt2cxp2logb9e3 25949 log2tlbnd 26095 bposlem4 26435 bposlem5 26436 bposlem7 26438 bposlem8 26439 bposlem9 26440 ex-fv 28807 dp2lt10 31158 hgt750lem 32631 hgt750lem2 32632 hgt750leme 32638 problem5 33627 60gcd7e1 40013 lcmineqlem23 40059 3lexlogpow5ineq1 40062 3lexlogpow5ineq2 40063 3lexlogpow5ineq4 40064 3lexlogpow5ineq3 40065 3lexlogpow2ineq2 40067 3lexlogpow5ineq5 40068 aks4d1lem1 40070 aks4d1p1 40084 aks4d1p6 40089 aks4d1p7d1 40090 aks4d1p7 40091 aks4d1p8 40095 31prm 45049 2exp340mod341 45185 341fppr2 45186 9fppr8 45189 nfermltl8rev 45194 nfermltl2rev 45195 wtgoldbnnsum4prm 45254 bgoldbnnsum3prm 45256 bgoldbtbndlem1 45257 ackval42 46042 |
Copyright terms: Public domain | W3C validator |