| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12308 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 12334 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 11233 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11248 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2830 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 ℝcr 11126 1c1 11128 + caddc 11130 8c8 12299 9c9 12300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-i2m1 11195 ax-1ne0 11196 ax-rrecex 11199 ax-cnre 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 |
| This theorem is referenced by: 7lt9 12438 6lt9 12439 5lt9 12440 4lt9 12441 3lt9 12442 2lt9 12443 1lt9 12444 10re 12725 9lt10 12837 8lt10 12838 0.999... 15895 cos2bnd 16204 sincos2sgn 16210 slotsdifplendx 17387 dsndxntsetndx 17405 unifndxntsetndx 17412 2logb9irr 26755 sqrt2cxp2logb9e3 26759 log2tlbnd 26905 bposlem4 27248 bposlem5 27249 bposlem7 27251 bposlem8 27252 bposlem9 27253 ex-fv 30370 dp2lt10 32804 hgt750lem 34629 hgt750lem2 34630 hgt750leme 34636 problem5 35637 60gcd7e1 41964 lcmineqlem23 42010 3lexlogpow5ineq1 42013 3lexlogpow5ineq2 42014 3lexlogpow5ineq4 42015 3lexlogpow5ineq3 42016 3lexlogpow2ineq2 42018 3lexlogpow5ineq5 42019 aks4d1lem1 42021 aks4d1p1 42035 aks4d1p6 42040 aks4d1p7d1 42041 aks4d1p7 42042 aks4d1p8 42046 9rp 42300 31prm 47559 2exp340mod341 47695 341fppr2 47696 9fppr8 47699 nfermltl8rev 47704 nfermltl2rev 47705 wtgoldbnnsum4prm 47764 bgoldbnnsum3prm 47766 bgoldbtbndlem1 47767 ackval42 48624 |
| Copyright terms: Public domain | W3C validator |