![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version |
Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
9re | ⊢ 9 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12363 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8re 12389 | . . 3 ⊢ 8 ∈ ℝ | |
3 | 1re 11290 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11305 | . 2 ⊢ (8 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2840 | 1 ⊢ 9 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 1c1 11185 + caddc 11187 8c8 12354 9c9 12355 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 |
This theorem is referenced by: 7lt9 12493 6lt9 12494 5lt9 12495 4lt9 12496 3lt9 12497 2lt9 12498 1lt9 12499 10re 12777 9lt10 12889 8lt10 12890 0.999... 15929 cos2bnd 16236 sincos2sgn 16242 slotsdifplendx 17434 dsndxntsetndx 17452 unifndxntsetndx 17459 cnfldfunALTOLDOLD 21416 tuslemOLD 24297 setsmsdsOLD 24509 tnglemOLD 24675 tngdsOLD 24690 2logb9irr 26856 sqrt2cxp2logb9e3 26860 log2tlbnd 27006 bposlem4 27349 bposlem5 27350 bposlem7 27352 bposlem8 27353 bposlem9 27354 ex-fv 30475 dp2lt10 32848 hgt750lem 34628 hgt750lem2 34629 hgt750leme 34635 problem5 35637 60gcd7e1 41962 lcmineqlem23 42008 3lexlogpow5ineq1 42011 3lexlogpow5ineq2 42012 3lexlogpow5ineq4 42013 3lexlogpow5ineq3 42014 3lexlogpow2ineq2 42016 3lexlogpow5ineq5 42017 aks4d1lem1 42019 aks4d1p1 42033 aks4d1p6 42038 aks4d1p7d1 42039 aks4d1p7 42040 aks4d1p8 42044 9rp 42292 31prm 47471 2exp340mod341 47607 341fppr2 47608 9fppr8 47611 nfermltl8rev 47616 nfermltl2rev 47617 wtgoldbnnsum4prm 47676 bgoldbnnsum3prm 47678 bgoldbtbndlem1 47679 ackval42 48430 |
Copyright terms: Public domain | W3C validator |