| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12256 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 12282 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 11174 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11189 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 1c1 11069 + caddc 11071 8c8 12247 9c9 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 |
| This theorem is referenced by: 7lt9 12381 6lt9 12382 5lt9 12383 4lt9 12384 3lt9 12385 2lt9 12386 1lt9 12387 10re 12668 9lt10 12780 8lt10 12781 0.999... 15847 cos2bnd 16156 sincos2sgn 16162 slotsdifplendx 17338 dsndxntsetndx 17356 unifndxntsetndx 17363 2logb9irr 26705 sqrt2cxp2logb9e3 26709 log2tlbnd 26855 bposlem4 27198 bposlem5 27199 bposlem7 27201 bposlem8 27202 bposlem9 27203 ex-fv 30372 dp2lt10 32804 hgt750lem 34642 hgt750lem2 34643 hgt750leme 34649 problem5 35656 60gcd7e1 41993 lcmineqlem23 42039 3lexlogpow5ineq1 42042 3lexlogpow5ineq2 42043 3lexlogpow5ineq4 42044 3lexlogpow5ineq3 42045 3lexlogpow2ineq2 42047 3lexlogpow5ineq5 42048 aks4d1lem1 42050 aks4d1p1 42064 aks4d1p6 42069 aks4d1p7d1 42070 aks4d1p7 42071 aks4d1p8 42075 9rp 42292 31prm 47598 2exp340mod341 47734 341fppr2 47735 9fppr8 47738 nfermltl8rev 47743 nfermltl2rev 47744 wtgoldbnnsum4prm 47803 bgoldbnnsum3prm 47805 bgoldbtbndlem1 47806 ackval42 48685 |
| Copyright terms: Public domain | W3C validator |