![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version |
Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
Ref | Expression |
---|---|
9re | ⊢ 9 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-9 12333 | . 2 ⊢ 9 = (8 + 1) | |
2 | 8re 12359 | . . 3 ⊢ 8 ∈ ℝ | |
3 | 1re 11258 | . . 3 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11273 | . 2 ⊢ (8 + 1) ∈ ℝ |
5 | 1, 4 | eqeltri 2834 | 1 ⊢ 9 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 ℝcr 11151 1c1 11153 + caddc 11155 8c8 12324 9c9 12325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-i2m1 11220 ax-1ne0 11221 ax-rrecex 11224 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 |
This theorem is referenced by: 7lt9 12463 6lt9 12464 5lt9 12465 4lt9 12466 3lt9 12467 2lt9 12468 1lt9 12469 10re 12749 9lt10 12861 8lt10 12862 0.999... 15913 cos2bnd 16220 sincos2sgn 16226 slotsdifplendx 17420 dsndxntsetndx 17438 unifndxntsetndx 17445 cnfldfunALTOLDOLD 21410 tuslemOLD 24291 setsmsdsOLD 24503 tnglemOLD 24669 tngdsOLD 24684 2logb9irr 26852 sqrt2cxp2logb9e3 26856 log2tlbnd 27002 bposlem4 27345 bposlem5 27346 bposlem7 27348 bposlem8 27349 bposlem9 27350 ex-fv 30471 dp2lt10 32850 hgt750lem 34644 hgt750lem2 34645 hgt750leme 34651 problem5 35653 60gcd7e1 41986 lcmineqlem23 42032 3lexlogpow5ineq1 42035 3lexlogpow5ineq2 42036 3lexlogpow5ineq4 42037 3lexlogpow5ineq3 42038 3lexlogpow2ineq2 42040 3lexlogpow5ineq5 42041 aks4d1lem1 42043 aks4d1p1 42057 aks4d1p6 42062 aks4d1p7d1 42063 aks4d1p7 42064 aks4d1p8 42068 9rp 42316 31prm 47521 2exp340mod341 47657 341fppr2 47658 9fppr8 47661 nfermltl8rev 47666 nfermltl2rev 47667 wtgoldbnnsum4prm 47726 bgoldbnnsum3prm 47728 bgoldbtbndlem1 47729 ackval42 48545 |
Copyright terms: Public domain | W3C validator |