| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12198 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 12224 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 11115 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11130 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2824 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℝcr 11008 1c1 11010 + caddc 11012 8c8 12189 9c9 12190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-i2m1 11077 ax-1ne0 11078 ax-rrecex 11081 ax-cnre 11082 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-iota 6438 df-fv 6490 df-ov 7352 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 |
| This theorem is referenced by: 7lt9 12323 6lt9 12324 5lt9 12325 4lt9 12326 3lt9 12327 2lt9 12328 1lt9 12329 10re 12610 9lt10 12722 8lt10 12723 0.999... 15788 cos2bnd 16097 sincos2sgn 16103 slotsdifplendx 17279 dsndxntsetndx 17297 unifndxntsetndx 17304 2logb9irr 26703 sqrt2cxp2logb9e3 26707 log2tlbnd 26853 bposlem4 27196 bposlem5 27197 bposlem7 27199 bposlem8 27200 bposlem9 27201 ex-fv 30387 dp2lt10 32825 hgt750lem 34625 hgt750lem2 34626 hgt750leme 34632 problem5 35652 60gcd7e1 41988 lcmineqlem23 42034 3lexlogpow5ineq1 42037 3lexlogpow5ineq2 42038 3lexlogpow5ineq4 42039 3lexlogpow5ineq3 42040 3lexlogpow2ineq2 42042 3lexlogpow5ineq5 42043 aks4d1lem1 42045 aks4d1p1 42059 aks4d1p6 42064 aks4d1p7d1 42065 aks4d1p7 42066 aks4d1p8 42070 9rp 42287 31prm 47591 2exp340mod341 47727 341fppr2 47728 9fppr8 47731 nfermltl8rev 47736 nfermltl2rev 47737 wtgoldbnnsum4prm 47796 bgoldbnnsum3prm 47798 bgoldbtbndlem1 47799 ackval42 48691 |
| Copyright terms: Public domain | W3C validator |