| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 9re | Structured version Visualization version GIF version | ||
| Description: The number 9 is real. (Contributed by NM, 27-May-1999.) |
| Ref | Expression |
|---|---|
| 9re | ⊢ 9 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-9 12195 | . 2 ⊢ 9 = (8 + 1) | |
| 2 | 8re 12221 | . . 3 ⊢ 8 ∈ ℝ | |
| 3 | 1re 11112 | . . 3 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11127 | . 2 ⊢ (8 + 1) ∈ ℝ |
| 5 | 1, 4 | eqeltri 2827 | 1 ⊢ 9 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 1c1 11007 + caddc 11009 8c8 12186 9c9 12187 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 |
| This theorem is referenced by: 7lt9 12320 6lt9 12321 5lt9 12322 4lt9 12323 3lt9 12324 2lt9 12325 1lt9 12326 10re 12607 9lt10 12719 8lt10 12720 0.999... 15788 cos2bnd 16097 sincos2sgn 16103 slotsdifplendx 17279 dsndxntsetndx 17297 unifndxntsetndx 17304 2logb9irr 26732 sqrt2cxp2logb9e3 26736 log2tlbnd 26882 bposlem4 27225 bposlem5 27226 bposlem7 27228 bposlem8 27229 bposlem9 27230 ex-fv 30423 dp2lt10 32864 hgt750lem 34664 hgt750lem2 34665 hgt750leme 34671 problem5 35713 60gcd7e1 42108 lcmineqlem23 42154 3lexlogpow5ineq1 42157 3lexlogpow5ineq2 42158 3lexlogpow5ineq4 42159 3lexlogpow5ineq3 42160 3lexlogpow2ineq2 42162 3lexlogpow5ineq5 42163 aks4d1lem1 42165 aks4d1p1 42179 aks4d1p6 42184 aks4d1p7d1 42185 aks4d1p7 42186 aks4d1p8 42190 9rp 42407 31prm 47707 2exp340mod341 47843 341fppr2 47844 9fppr8 47847 nfermltl8rev 47852 nfermltl2rev 47853 wtgoldbnnsum4prm 47912 bgoldbnnsum3prm 47914 bgoldbtbndlem1 47915 ackval42 48807 |
| Copyright terms: Public domain | W3C validator |