Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem11 Structured version   Visualization version   GIF version

Theorem stirlinglem11 42376
Description: 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem11.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem11.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem11.3 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
Assertion
Ref Expression
stirlinglem11 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐾   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐾(𝑘)

Proof of Theorem stirlinglem11
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0red 10647 . . 3 (𝑁 ∈ ℕ → 0 ∈ ℝ)
2 stirlinglem11.3 . . . . . 6 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
32a1i 11 . . . . 5 (𝑁 ∈ ℕ → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
4 simpr 487 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → 𝑘 = 1)
54oveq2d 7175 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (2 · 𝑘) = (2 · 1))
65oveq1d 7174 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((2 · 𝑘) + 1) = ((2 · 1) + 1))
76oveq2d 7175 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 1) + 1)))
85oveq2d 7175 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 1)))
97, 8oveq12d 7177 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
10 1nn 11652 . . . . . 6 1 ∈ ℕ
1110a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℕ)
12 2cnd 11718 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℂ)
13 1cnd 10639 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1412, 13mulcld 10664 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℂ)
1514, 13addcld 10663 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℂ)
16 2t1e2 11803 . . . . . . . . . . 11 (2 · 1) = 2
1716oveq1i 7169 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
18 2p1e3 11782 . . . . . . . . . 10 (2 + 1) = 3
1917, 18eqtri 2847 . . . . . . . . 9 ((2 · 1) + 1) = 3
20 3ne0 11746 . . . . . . . . 9 3 ≠ 0
2119, 20eqnetri 3089 . . . . . . . 8 ((2 · 1) + 1) ≠ 0
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ≠ 0)
2315, 22reccld 11412 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℂ)
24 nncn 11649 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2512, 24mulcld 10664 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
2625, 13addcld 10663 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
27 1red 10645 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
28 2re 11714 . . . . . . . . . . . . 13 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
30 nnre 11648 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3129, 30remulcld 10674 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
3231, 27readdcld 10673 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
33 0lt1 11165 . . . . . . . . . . 11 0 < 1
3433a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 1)
35 2rp 12397 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
37 nnrp 12403 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3836, 37rpmulcld 12450 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3927, 38ltaddrp2d 12468 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
401, 27, 32, 34, 39lttrd 10804 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4140gt0ne0d 11207 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
4226, 41reccld 11412 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
43 2nn0 11917 . . . . . . . . 9 2 ∈ ℕ0
4443a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
45 1nn0 11916 . . . . . . . . 9 1 ∈ ℕ0
4645a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
4744, 46nn0mulcld 11963 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℕ0)
4842, 47expcld 13513 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℂ)
4923, 48mulcld 10664 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℂ)
503, 9, 11, 49fvmptd 6778 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
51 1re 10644 . . . . . . . . 9 1 ∈ ℝ
5228, 51remulcli 10660 . . . . . . . 8 (2 · 1) ∈ ℝ
5352, 51readdcli 10659 . . . . . . 7 ((2 · 1) + 1) ∈ ℝ
5453, 21rereccli 11408 . . . . . 6 (1 / ((2 · 1) + 1)) ∈ ℝ
5554a1i 11 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ)
5632, 41rereccld 11470 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
5756, 47reexpcld 13530 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ)
5855, 57remulcld 10674 . . . 4 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ)
5950, 58eqeltrd 2916 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ)
60 stirlinglem11.1 . . . . . . . 8 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6160stirlinglem2 42367 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
6261relogcld 25209 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
63 nfcv 2980 . . . . . . 7 𝑛𝑁
64 nfcv 2980 . . . . . . . 8 𝑛log
65 nfmpt1 5167 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6660, 65nfcxfr 2978 . . . . . . . . 9 𝑛𝐴
6766, 63nffv 6683 . . . . . . . 8 𝑛(𝐴𝑁)
6864, 67nffv 6683 . . . . . . 7 𝑛(log‘(𝐴𝑁))
69 2fveq3 6678 . . . . . . 7 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
70 stirlinglem11.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
7163, 68, 69, 70fvmptf 6792 . . . . . 6 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
7262, 71mpdan 685 . . . . 5 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
7372, 62eqeltrd 2916 . . . 4 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
74 peano2nn 11653 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
7560stirlinglem2 42367 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7776relogcld 25209 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ)
78 nfcv 2980 . . . . . . 7 𝑛(𝑁 + 1)
7966, 78nffv 6683 . . . . . . . 8 𝑛(𝐴‘(𝑁 + 1))
8064, 79nffv 6683 . . . . . . 7 𝑛(log‘(𝐴‘(𝑁 + 1)))
81 2fveq3 6678 . . . . . . 7 (𝑛 = (𝑁 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑁 + 1))))
8278, 80, 81, 70fvmptf 6792 . . . . . 6 (((𝑁 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ) → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8374, 77, 82syl2anc 586 . . . . 5 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8483, 77eqeltrd 2916 . . . 4 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℝ)
8573, 84resubcld 11071 . . 3 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℝ)
8629, 27remulcld 10674 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℝ)
87 0le2 11742 . . . . . . . . . 10 0 ≤ 2
8887a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 2)
89 0le1 11166 . . . . . . . . . 10 0 ≤ 1
9089a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 1)
9129, 27, 88, 90mulge0d 11220 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ (2 · 1))
9286, 91ge0p1rpd 12464 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℝ+)
9392rpreccld 12444 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ+)
9437rpge0d 12438 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
9529, 30, 88, 94mulge0d 11220 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
9631, 95ge0p1rpd 12464 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
9796rpreccld 12444 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
98 2z 12017 . . . . . . . . 9 2 ∈ ℤ
9998a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℤ)
100 1z 12015 . . . . . . . . 9 1 ∈ ℤ
101100a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℤ)
10299, 101zmulcld 12096 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℤ)
10397, 102rpexpcld 13611 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ+)
10493, 103rpmulcld 12450 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ+)
10550, 104eqeltrd 2916 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ+)
106105rpgt0d 12437 . . 3 (𝑁 ∈ ℕ → 0 < (𝐾‘1))
10785, 59resubcld 11071 . . . . 5 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) ∈ ℝ)
108 eqid 2824 . . . . . . 7 (ℤ‘(1 + 1)) = (ℤ‘(1 + 1))
109101peano2zd 12093 . . . . . . 7 (𝑁 ∈ ℕ → (1 + 1) ∈ ℤ)
110 nnuz 12284 . . . . . . . 8 ℕ = (ℤ‘1)
1112a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
112 oveq2 7167 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
113112oveq1d 7174 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
114113oveq2d 7175 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑗) + 1)))
115112oveq2d 7175 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
116114, 115oveq12d 7177 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
117116adantl 484 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝑗) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
118 simpr 487 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
119 2cnd 11718 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℂ)
120 nncn 11649 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
121120adantl 484 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
122119, 121mulcld 10664 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
123 1cnd 10639 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
124122, 123addcld 10663 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℂ)
125 0red 10647 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℝ)
126 1red 10645 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
12728a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ)
128 nnre 11648 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
129128adantl 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ)
130127, 129remulcld 10674 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ)
131130, 126readdcld 10673 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℝ)
13233a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < 1)
13335a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
134 nnrp 12403 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
135134adantl 484 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
136133, 135rpmulcld 12450 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ+)
137126, 136ltaddrp2d 12468 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 < ((2 · 𝑗) + 1))
138125, 126, 131, 132, 137lttrd 10804 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < ((2 · 𝑗) + 1))
139138gt0ne0d 11207 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
140124, 139reccld 11412 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
14124adantr 483 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑁 ∈ ℂ)
142119, 141mulcld 10664 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
143142, 123addcld 10663 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ∈ ℂ)
14441adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ≠ 0)
145143, 144reccld 11412 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
14643a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℕ0)
147 nnnn0 11907 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
148147adantl 484 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
149146, 148nn0mulcld 11963 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ0)
150145, 149expcld 13513 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℂ)
151140, 150mulcld 10664 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
152111, 117, 118, 151fvmptd 6778 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
153 0red 10647 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 ∈ ℝ)
154 1red 10645 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 ∈ ℝ)
15528a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ)
156155, 128remulcld 10674 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
157156, 154readdcld 10673 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
15833a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < 1)
15935a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
160159, 134rpmulcld 12450 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
161154, 160ltaddrp2d 12468 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
162153, 154, 157, 158, 161lttrd 10804 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
163162gt0ne0d 11207 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
164163adantl 484 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
165124, 164reccld 11412 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
166165, 150mulcld 10664 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
167152, 166eqeltrd 2916 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) ∈ ℂ)
168 eqid 2824 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
16960, 70, 168, 2stirlinglem9 42374 . . . . . . . 8 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
170110, 11, 167, 169clim2ser 15014 . . . . . . 7 (𝑁 ∈ ℕ → seq(1 + 1)( + , 𝐾) ⇝ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
171 peano2nn 11653 . . . . . . . . . . . . 13 (1 ∈ ℕ → (1 + 1) ∈ ℕ)
172 uznnssnn 12298 . . . . . . . . . . . . 13 ((1 + 1) ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
17310, 171, 172mp2b 10 . . . . . . . . . . . 12 (ℤ‘(1 + 1)) ⊆ ℕ
174173a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
175174sseld 3969 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ))
176175imdistani 571 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ))
177176, 152syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
17828a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ∈ ℝ)
179 eluzelre 12257 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℝ)
180178, 179remulcld 10674 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → (2 · 𝑗) ∈ ℝ)
181 1red 10645 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 1 ∈ ℝ)
182180, 181readdcld 10673 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ∈ ℝ)
183173sseli 3966 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ)
184183, 163syl 17 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ≠ 0)
185182, 184rereccld 11470 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
186185adantl 484 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
18732adantr 483 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ)
18841adantr 483 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ≠ 0)
189187, 188rereccld 11470 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
190176, 149syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℕ0)
191189, 190reexpcld 13530 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℝ)
192186, 191remulcld 10674 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℝ)
193177, 192eqeltrd 2916 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) ∈ ℝ)
194 1red 10645 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 1 ∈ ℝ)
19528a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 2 ∈ ℝ)
196176, 129syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑗 ∈ ℝ)
197195, 196remulcld 10674 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℝ)
19887a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 2)
199 0red 10647 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ∈ ℝ)
20087a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 2)
201 1p1e2 11765 . . . . . . . . . . . . . . 15 (1 + 1) = 2
202 eluzle 12259 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 + 1) ≤ 𝑗)
203201, 202eqbrtrrid 5105 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ≤ 𝑗)
204199, 178, 179, 200, 203letrd 10800 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 𝑗)
205204adantl 484 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑗)
206195, 196, 198, 205mulge0d 11220 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑗))
207197, 206ge0p1rpd 12464 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑗) + 1) ∈ ℝ+)
20889a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 1)
209194, 207, 208divge0d 12474 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑗) + 1)))
21030adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑁 ∈ ℝ)
211195, 210remulcld 10674 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑁) ∈ ℝ)
21294adantr 483 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑁)
213195, 210, 198, 212mulge0d 11220 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑁))
214211, 213ge0p1rpd 12464 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ+)
215194, 214, 208divge0d 12474 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑁) + 1)))
216189, 190, 215expge0d 13531 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
217186, 191, 209, 216mulge0d 11220 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
218217, 177breqtrrd 5097 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (𝐾𝑗))
219108, 109, 170, 193, 218iserge0 15020 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
220 seq1 13385 . . . . . . . 8 (1 ∈ ℤ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
221100, 220mp1i 13 . . . . . . 7 (𝑁 ∈ ℕ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
222221oveq2d 7175 . . . . . 6 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)) = (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
223219, 222breqtrd 5095 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
2241, 107, 59, 223leadd1dd 11257 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) ≤ ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)))
22550, 49eqeltrd 2916 . . . . 5 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℂ)
226225addid2d 10844 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) = (𝐾‘1))
22773recnd 10672 . . . . . 6 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℂ)
22884recnd 10672 . . . . . 6 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℂ)
229227, 228subcld 11000 . . . . 5 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℂ)
230229, 225npcand 11004 . . . 4 (𝑁 ∈ ℕ → ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)) = ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
231224, 226, 2303brtr3d 5100 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ≤ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
2321, 59, 85, 106, 231ltletrd 10803 . 2 (𝑁 ∈ ℕ → 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
23384, 73posdifd 11230 . 2 (𝑁 ∈ ℕ → ((𝐵‘(𝑁 + 1)) < (𝐵𝑁) ↔ 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1)))))
234232, 233mpbird 259 1 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  wss 3939   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  cc 10538  cr 10539  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545   < clt 10678  cle 10679  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  3c3 11696  0cn0 11900  cz 11984  cuz 12246  +crp 12392  seqcseq 13372  cexp 13432  !cfa 13636  csqrt 14595  eceu 15419  logclog 25141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618  ax-addf 10619  ax-mulf 10620
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-fi 8878  df-sup 8909  df-inf 8910  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-xnn0 11971  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14429  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-limsup 14831  df-clim 14848  df-rlim 14849  df-sum 15046  df-ef 15424  df-e 15425  df-sin 15426  df-cos 15427  df-tan 15428  df-pi 15429  df-dvds 15611  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-limc 24467  df-dv 24468  df-ulm 24968  df-log 25143  df-cxp 25144
This theorem is referenced by:  stirlinglem13  42378
  Copyright terms: Public domain W3C validator