Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem11 Structured version   Visualization version   GIF version

Theorem stirlinglem11 44315
Description: 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem11.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem11.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem11.3 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
Assertion
Ref Expression
stirlinglem11 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐾   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐾(𝑘)

Proof of Theorem stirlinglem11
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0red 11158 . . 3 (𝑁 ∈ ℕ → 0 ∈ ℝ)
2 stirlinglem11.3 . . . . . 6 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
32a1i 11 . . . . 5 (𝑁 ∈ ℕ → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
4 simpr 485 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → 𝑘 = 1)
54oveq2d 7373 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (2 · 𝑘) = (2 · 1))
65oveq1d 7372 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((2 · 𝑘) + 1) = ((2 · 1) + 1))
76oveq2d 7373 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 1) + 1)))
85oveq2d 7373 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 1)))
97, 8oveq12d 7375 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
10 1nn 12164 . . . . . 6 1 ∈ ℕ
1110a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℕ)
12 2cnd 12231 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℂ)
13 1cnd 11150 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1412, 13mulcld 11175 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℂ)
1514, 13addcld 11174 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℂ)
16 2t1e2 12316 . . . . . . . . . . 11 (2 · 1) = 2
1716oveq1i 7367 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
18 2p1e3 12295 . . . . . . . . . 10 (2 + 1) = 3
1917, 18eqtri 2764 . . . . . . . . 9 ((2 · 1) + 1) = 3
20 3ne0 12259 . . . . . . . . 9 3 ≠ 0
2119, 20eqnetri 3014 . . . . . . . 8 ((2 · 1) + 1) ≠ 0
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ≠ 0)
2315, 22reccld 11924 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℂ)
24 nncn 12161 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2512, 24mulcld 11175 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
2625, 13addcld 11174 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
27 1red 11156 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
28 2re 12227 . . . . . . . . . . . . 13 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
30 nnre 12160 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3129, 30remulcld 11185 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
3231, 27readdcld 11184 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
33 0lt1 11677 . . . . . . . . . . 11 0 < 1
3433a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 1)
35 2rp 12920 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
37 nnrp 12926 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3836, 37rpmulcld 12973 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3927, 38ltaddrp2d 12991 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
401, 27, 32, 34, 39lttrd 11316 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4140gt0ne0d 11719 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
4226, 41reccld 11924 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
43 2nn0 12430 . . . . . . . . 9 2 ∈ ℕ0
4443a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
45 1nn0 12429 . . . . . . . . 9 1 ∈ ℕ0
4645a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
4744, 46nn0mulcld 12478 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℕ0)
4842, 47expcld 14051 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℂ)
4923, 48mulcld 11175 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℂ)
503, 9, 11, 49fvmptd 6955 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
51 1re 11155 . . . . . . . . 9 1 ∈ ℝ
5228, 51remulcli 11171 . . . . . . . 8 (2 · 1) ∈ ℝ
5352, 51readdcli 11170 . . . . . . 7 ((2 · 1) + 1) ∈ ℝ
5453, 21rereccli 11920 . . . . . 6 (1 / ((2 · 1) + 1)) ∈ ℝ
5554a1i 11 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ)
5632, 41rereccld 11982 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
5756, 47reexpcld 14068 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ)
5855, 57remulcld 11185 . . . 4 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ)
5950, 58eqeltrd 2838 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ)
60 stirlinglem11.1 . . . . . . . 8 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6160stirlinglem2 44306 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
6261relogcld 25978 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
63 nfcv 2907 . . . . . . 7 𝑛𝑁
64 nfcv 2907 . . . . . . . 8 𝑛log
65 nfmpt1 5213 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6660, 65nfcxfr 2905 . . . . . . . . 9 𝑛𝐴
6766, 63nffv 6852 . . . . . . . 8 𝑛(𝐴𝑁)
6864, 67nffv 6852 . . . . . . 7 𝑛(log‘(𝐴𝑁))
69 2fveq3 6847 . . . . . . 7 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
70 stirlinglem11.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
7163, 68, 69, 70fvmptf 6969 . . . . . 6 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
7262, 71mpdan 685 . . . . 5 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
7372, 62eqeltrd 2838 . . . 4 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
74 peano2nn 12165 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
7560stirlinglem2 44306 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7776relogcld 25978 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ)
78 nfcv 2907 . . . . . . 7 𝑛(𝑁 + 1)
7966, 78nffv 6852 . . . . . . . 8 𝑛(𝐴‘(𝑁 + 1))
8064, 79nffv 6852 . . . . . . 7 𝑛(log‘(𝐴‘(𝑁 + 1)))
81 2fveq3 6847 . . . . . . 7 (𝑛 = (𝑁 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑁 + 1))))
8278, 80, 81, 70fvmptf 6969 . . . . . 6 (((𝑁 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ) → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8374, 77, 82syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8483, 77eqeltrd 2838 . . . 4 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℝ)
8573, 84resubcld 11583 . . 3 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℝ)
8629, 27remulcld 11185 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℝ)
87 0le2 12255 . . . . . . . . . 10 0 ≤ 2
8887a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 2)
89 0le1 11678 . . . . . . . . . 10 0 ≤ 1
9089a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 1)
9129, 27, 88, 90mulge0d 11732 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ (2 · 1))
9286, 91ge0p1rpd 12987 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℝ+)
9392rpreccld 12967 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ+)
9437rpge0d 12961 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
9529, 30, 88, 94mulge0d 11732 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
9631, 95ge0p1rpd 12987 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
9796rpreccld 12967 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
98 2z 12535 . . . . . . . . 9 2 ∈ ℤ
9998a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℤ)
100 1z 12533 . . . . . . . . 9 1 ∈ ℤ
101100a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℤ)
10299, 101zmulcld 12613 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℤ)
10397, 102rpexpcld 14150 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ+)
10493, 103rpmulcld 12973 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ+)
10550, 104eqeltrd 2838 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ+)
106105rpgt0d 12960 . . 3 (𝑁 ∈ ℕ → 0 < (𝐾‘1))
10785, 59resubcld 11583 . . . . 5 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) ∈ ℝ)
108 eqid 2736 . . . . . . 7 (ℤ‘(1 + 1)) = (ℤ‘(1 + 1))
109101peano2zd 12610 . . . . . . 7 (𝑁 ∈ ℕ → (1 + 1) ∈ ℤ)
110 nnuz 12806 . . . . . . . 8 ℕ = (ℤ‘1)
1112a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
112 oveq2 7365 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
113112oveq1d 7372 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
114113oveq2d 7373 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑗) + 1)))
115112oveq2d 7373 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
116114, 115oveq12d 7375 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
117116adantl 482 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝑗) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
118 simpr 485 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
119 2cnd 12231 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℂ)
120 nncn 12161 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
121120adantl 482 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
122119, 121mulcld 11175 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
123 1cnd 11150 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
124122, 123addcld 11174 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℂ)
125 0red 11158 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℝ)
126 1red 11156 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
12728a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ)
128 nnre 12160 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
129128adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ)
130127, 129remulcld 11185 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ)
131130, 126readdcld 11184 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℝ)
13233a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < 1)
13335a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
134 nnrp 12926 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
135134adantl 482 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
136133, 135rpmulcld 12973 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ+)
137126, 136ltaddrp2d 12991 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 < ((2 · 𝑗) + 1))
138125, 126, 131, 132, 137lttrd 11316 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < ((2 · 𝑗) + 1))
139138gt0ne0d 11719 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
140124, 139reccld 11924 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
14124adantr 481 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑁 ∈ ℂ)
142119, 141mulcld 11175 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
143142, 123addcld 11174 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ∈ ℂ)
14441adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ≠ 0)
145143, 144reccld 11924 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
14643a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℕ0)
147 nnnn0 12420 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
148147adantl 482 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
149146, 148nn0mulcld 12478 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ0)
150145, 149expcld 14051 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℂ)
151140, 150mulcld 11175 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
152111, 117, 118, 151fvmptd 6955 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
153 0red 11158 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 ∈ ℝ)
154 1red 11156 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 ∈ ℝ)
15528a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ)
156155, 128remulcld 11185 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
157156, 154readdcld 11184 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
15833a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < 1)
15935a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
160159, 134rpmulcld 12973 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
161154, 160ltaddrp2d 12991 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
162153, 154, 157, 158, 161lttrd 11316 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
163162gt0ne0d 11719 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
164163adantl 482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
165124, 164reccld 11924 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
166165, 150mulcld 11175 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
167152, 166eqeltrd 2838 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) ∈ ℂ)
168 eqid 2736 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
16960, 70, 168, 2stirlinglem9 44313 . . . . . . . 8 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
170110, 11, 167, 169clim2ser 15539 . . . . . . 7 (𝑁 ∈ ℕ → seq(1 + 1)( + , 𝐾) ⇝ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
171 peano2nn 12165 . . . . . . . . . . . . 13 (1 ∈ ℕ → (1 + 1) ∈ ℕ)
172 uznnssnn 12820 . . . . . . . . . . . . 13 ((1 + 1) ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
17310, 171, 172mp2b 10 . . . . . . . . . . . 12 (ℤ‘(1 + 1)) ⊆ ℕ
174173a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
175174sseld 3943 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ))
176175imdistani 569 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ))
177176, 152syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
17828a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ∈ ℝ)
179 eluzelre 12774 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℝ)
180178, 179remulcld 11185 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → (2 · 𝑗) ∈ ℝ)
181 1red 11156 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 1 ∈ ℝ)
182180, 181readdcld 11184 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ∈ ℝ)
183173sseli 3940 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ)
184183, 163syl 17 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ≠ 0)
185182, 184rereccld 11982 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
186185adantl 482 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
18732adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ)
18841adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ≠ 0)
189187, 188rereccld 11982 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
190176, 149syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℕ0)
191189, 190reexpcld 14068 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℝ)
192186, 191remulcld 11185 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℝ)
193177, 192eqeltrd 2838 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) ∈ ℝ)
194 1red 11156 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 1 ∈ ℝ)
19528a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 2 ∈ ℝ)
196176, 129syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑗 ∈ ℝ)
197195, 196remulcld 11185 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℝ)
19887a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 2)
199 0red 11158 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ∈ ℝ)
20087a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 2)
201 1p1e2 12278 . . . . . . . . . . . . . . 15 (1 + 1) = 2
202 eluzle 12776 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 + 1) ≤ 𝑗)
203201, 202eqbrtrrid 5141 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ≤ 𝑗)
204199, 178, 179, 200, 203letrd 11312 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 𝑗)
205204adantl 482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑗)
206195, 196, 198, 205mulge0d 11732 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑗))
207197, 206ge0p1rpd 12987 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑗) + 1) ∈ ℝ+)
20889a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 1)
209194, 207, 208divge0d 12997 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑗) + 1)))
21030adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑁 ∈ ℝ)
211195, 210remulcld 11185 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑁) ∈ ℝ)
21294adantr 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑁)
213195, 210, 198, 212mulge0d 11732 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑁))
214211, 213ge0p1rpd 12987 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ+)
215194, 214, 208divge0d 12997 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑁) + 1)))
216189, 190, 215expge0d 14069 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
217186, 191, 209, 216mulge0d 11732 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
218217, 177breqtrrd 5133 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (𝐾𝑗))
219108, 109, 170, 193, 218iserge0 15545 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
220 seq1 13919 . . . . . . . 8 (1 ∈ ℤ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
221100, 220mp1i 13 . . . . . . 7 (𝑁 ∈ ℕ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
222221oveq2d 7373 . . . . . 6 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)) = (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
223219, 222breqtrd 5131 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
2241, 107, 59, 223leadd1dd 11769 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) ≤ ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)))
22550, 49eqeltrd 2838 . . . . 5 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℂ)
226225addid2d 11356 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) = (𝐾‘1))
22773recnd 11183 . . . . . 6 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℂ)
22884recnd 11183 . . . . . 6 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℂ)
229227, 228subcld 11512 . . . . 5 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℂ)
230229, 225npcand 11516 . . . 4 (𝑁 ∈ ℕ → ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)) = ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
231224, 226, 2303brtr3d 5136 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ≤ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
2321, 59, 85, 106, 231ltletrd 11315 . 2 (𝑁 ∈ ℕ → 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
23384, 73posdifd 11742 . 2 (𝑁 ∈ ℕ → ((𝐵‘(𝑁 + 1)) < (𝐵𝑁) ↔ 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1)))))
234232, 233mpbird 256 1 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wne 2943  wss 3910   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  3c3 12209  0cn0 12413  cz 12499  cuz 12763  +crp 12915  seqcseq 13906  cexp 13967  !cfa 14173  csqrt 15118  eceu 15945  logclog 25910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-xnn0 12486  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-fac 14174  df-bc 14203  df-hash 14231  df-shft 14952  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-ef 15950  df-e 15951  df-sin 15952  df-cos 15953  df-tan 15954  df-pi 15955  df-dvds 16137  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231  df-ulm 25736  df-log 25912  df-cxp 25913
This theorem is referenced by:  stirlinglem13  44317
  Copyright terms: Public domain W3C validator