Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem11 Structured version   Visualization version   GIF version

Theorem stirlinglem11 46075
Description: 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem11.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem11.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem11.3 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
Assertion
Ref Expression
stirlinglem11 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐾   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐾(𝑘)

Proof of Theorem stirlinglem11
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0red 11153 . . 3 (𝑁 ∈ ℕ → 0 ∈ ℝ)
2 stirlinglem11.3 . . . . . 6 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
32a1i 11 . . . . 5 (𝑁 ∈ ℕ → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
4 simpr 484 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → 𝑘 = 1)
54oveq2d 7385 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (2 · 𝑘) = (2 · 1))
65oveq1d 7384 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((2 · 𝑘) + 1) = ((2 · 1) + 1))
76oveq2d 7385 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 1) + 1)))
85oveq2d 7385 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 1)))
97, 8oveq12d 7387 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
10 1nn 12173 . . . . . 6 1 ∈ ℕ
1110a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℕ)
12 2cnd 12240 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℂ)
13 1cnd 11145 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1412, 13mulcld 11170 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℂ)
1514, 13addcld 11169 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℂ)
16 2t1e2 12320 . . . . . . . . . . 11 (2 · 1) = 2
1716oveq1i 7379 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
18 2p1e3 12299 . . . . . . . . . 10 (2 + 1) = 3
1917, 18eqtri 2752 . . . . . . . . 9 ((2 · 1) + 1) = 3
20 3ne0 12268 . . . . . . . . 9 3 ≠ 0
2119, 20eqnetri 2995 . . . . . . . 8 ((2 · 1) + 1) ≠ 0
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ≠ 0)
2315, 22reccld 11927 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℂ)
24 nncn 12170 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2512, 24mulcld 11170 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
2625, 13addcld 11169 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
27 1red 11151 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
28 2re 12236 . . . . . . . . . . . . 13 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
30 nnre 12169 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3129, 30remulcld 11180 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
3231, 27readdcld 11179 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
33 0lt1 11676 . . . . . . . . . . 11 0 < 1
3433a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 1)
35 2rp 12932 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
37 nnrp 12939 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3836, 37rpmulcld 12987 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3927, 38ltaddrp2d 13005 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
401, 27, 32, 34, 39lttrd 11311 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4140gt0ne0d 11718 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
4226, 41reccld 11927 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
43 2nn0 12435 . . . . . . . . 9 2 ∈ ℕ0
4443a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
45 1nn0 12434 . . . . . . . . 9 1 ∈ ℕ0
4645a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
4744, 46nn0mulcld 12484 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℕ0)
4842, 47expcld 14087 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℂ)
4923, 48mulcld 11170 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℂ)
503, 9, 11, 49fvmptd 6957 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
51 1re 11150 . . . . . . . . 9 1 ∈ ℝ
5228, 51remulcli 11166 . . . . . . . 8 (2 · 1) ∈ ℝ
5352, 51readdcli 11165 . . . . . . 7 ((2 · 1) + 1) ∈ ℝ
5453, 21rereccli 11923 . . . . . 6 (1 / ((2 · 1) + 1)) ∈ ℝ
5554a1i 11 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ)
5632, 41rereccld 11985 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
5756, 47reexpcld 14104 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ)
5855, 57remulcld 11180 . . . 4 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ)
5950, 58eqeltrd 2828 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ)
60 stirlinglem11.1 . . . . . . . 8 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6160stirlinglem2 46066 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
6261relogcld 26565 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
63 nfcv 2891 . . . . . . 7 𝑛𝑁
64 nfcv 2891 . . . . . . . 8 𝑛log
65 nfmpt1 5201 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6660, 65nfcxfr 2889 . . . . . . . . 9 𝑛𝐴
6766, 63nffv 6850 . . . . . . . 8 𝑛(𝐴𝑁)
6864, 67nffv 6850 . . . . . . 7 𝑛(log‘(𝐴𝑁))
69 2fveq3 6845 . . . . . . 7 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
70 stirlinglem11.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
7163, 68, 69, 70fvmptf 6971 . . . . . 6 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
7262, 71mpdan 687 . . . . 5 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
7372, 62eqeltrd 2828 . . . 4 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
74 peano2nn 12174 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
7560stirlinglem2 46066 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7776relogcld 26565 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ)
78 nfcv 2891 . . . . . . 7 𝑛(𝑁 + 1)
7966, 78nffv 6850 . . . . . . . 8 𝑛(𝐴‘(𝑁 + 1))
8064, 79nffv 6850 . . . . . . 7 𝑛(log‘(𝐴‘(𝑁 + 1)))
81 2fveq3 6845 . . . . . . 7 (𝑛 = (𝑁 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑁 + 1))))
8278, 80, 81, 70fvmptf 6971 . . . . . 6 (((𝑁 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ) → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8374, 77, 82syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8483, 77eqeltrd 2828 . . . 4 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℝ)
8573, 84resubcld 11582 . . 3 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℝ)
8629, 27remulcld 11180 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℝ)
87 0le2 12264 . . . . . . . . . 10 0 ≤ 2
8887a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 2)
89 0le1 11677 . . . . . . . . . 10 0 ≤ 1
9089a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 1)
9129, 27, 88, 90mulge0d 11731 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ (2 · 1))
9286, 91ge0p1rpd 13001 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℝ+)
9392rpreccld 12981 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ+)
9437rpge0d 12975 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
9529, 30, 88, 94mulge0d 11731 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
9631, 95ge0p1rpd 13001 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
9796rpreccld 12981 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
98 2z 12541 . . . . . . . . 9 2 ∈ ℤ
9998a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℤ)
100 1z 12539 . . . . . . . . 9 1 ∈ ℤ
101100a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℤ)
10299, 101zmulcld 12620 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℤ)
10397, 102rpexpcld 14188 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ+)
10493, 103rpmulcld 12987 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ+)
10550, 104eqeltrd 2828 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ+)
106105rpgt0d 12974 . . 3 (𝑁 ∈ ℕ → 0 < (𝐾‘1))
10785, 59resubcld 11582 . . . . 5 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) ∈ ℝ)
108 eqid 2729 . . . . . . 7 (ℤ‘(1 + 1)) = (ℤ‘(1 + 1))
109101peano2zd 12617 . . . . . . 7 (𝑁 ∈ ℕ → (1 + 1) ∈ ℤ)
110 nnuz 12812 . . . . . . . 8 ℕ = (ℤ‘1)
1112a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
112 oveq2 7377 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
113112oveq1d 7384 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
114113oveq2d 7385 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑗) + 1)))
115112oveq2d 7385 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
116114, 115oveq12d 7387 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
117116adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝑗) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
118 simpr 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
119 2cnd 12240 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℂ)
120 nncn 12170 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
121120adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
122119, 121mulcld 11170 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
123 1cnd 11145 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
124122, 123addcld 11169 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℂ)
125 0red 11153 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℝ)
126 1red 11151 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
12728a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ)
128 nnre 12169 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
129128adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ)
130127, 129remulcld 11180 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ)
131130, 126readdcld 11179 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℝ)
13233a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < 1)
13335a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
134 nnrp 12939 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
135134adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
136133, 135rpmulcld 12987 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ+)
137126, 136ltaddrp2d 13005 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 < ((2 · 𝑗) + 1))
138125, 126, 131, 132, 137lttrd 11311 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < ((2 · 𝑗) + 1))
139138gt0ne0d 11718 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
140124, 139reccld 11927 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
14124adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑁 ∈ ℂ)
142119, 141mulcld 11170 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
143142, 123addcld 11169 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ∈ ℂ)
14441adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ≠ 0)
145143, 144reccld 11927 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
14643a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℕ0)
147 nnnn0 12425 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
148147adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
149146, 148nn0mulcld 12484 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ0)
150145, 149expcld 14087 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℂ)
151140, 150mulcld 11170 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
152111, 117, 118, 151fvmptd 6957 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
153 0red 11153 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 ∈ ℝ)
154 1red 11151 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 ∈ ℝ)
15528a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ)
156155, 128remulcld 11180 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
157156, 154readdcld 11179 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
15833a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < 1)
15935a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
160159, 134rpmulcld 12987 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
161154, 160ltaddrp2d 13005 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
162153, 154, 157, 158, 161lttrd 11311 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
163162gt0ne0d 11718 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
164163adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
165124, 164reccld 11927 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
166165, 150mulcld 11170 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
167152, 166eqeltrd 2828 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) ∈ ℂ)
168 eqid 2729 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
16960, 70, 168, 2stirlinglem9 46073 . . . . . . . 8 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
170110, 11, 167, 169clim2ser 15597 . . . . . . 7 (𝑁 ∈ ℕ → seq(1 + 1)( + , 𝐾) ⇝ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
171 peano2nn 12174 . . . . . . . . . . . . 13 (1 ∈ ℕ → (1 + 1) ∈ ℕ)
172 uznnssnn 12830 . . . . . . . . . . . . 13 ((1 + 1) ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
17310, 171, 172mp2b 10 . . . . . . . . . . . 12 (ℤ‘(1 + 1)) ⊆ ℕ
174173a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
175174sseld 3942 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ))
176175imdistani 568 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ))
177176, 152syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
17828a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ∈ ℝ)
179 eluzelre 12780 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℝ)
180178, 179remulcld 11180 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → (2 · 𝑗) ∈ ℝ)
181 1red 11151 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 1 ∈ ℝ)
182180, 181readdcld 11179 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ∈ ℝ)
183173sseli 3939 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ)
184183, 163syl 17 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ≠ 0)
185182, 184rereccld 11985 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
186185adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
18732adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ)
18841adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ≠ 0)
189187, 188rereccld 11985 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
190176, 149syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℕ0)
191189, 190reexpcld 14104 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℝ)
192186, 191remulcld 11180 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℝ)
193177, 192eqeltrd 2828 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) ∈ ℝ)
194 1red 11151 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 1 ∈ ℝ)
19528a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 2 ∈ ℝ)
196176, 129syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑗 ∈ ℝ)
197195, 196remulcld 11180 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℝ)
19887a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 2)
199 0red 11153 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ∈ ℝ)
20087a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 2)
201 1p1e2 12282 . . . . . . . . . . . . . . 15 (1 + 1) = 2
202 eluzle 12782 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 + 1) ≤ 𝑗)
203201, 202eqbrtrrid 5138 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ≤ 𝑗)
204199, 178, 179, 200, 203letrd 11307 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 𝑗)
205204adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑗)
206195, 196, 198, 205mulge0d 11731 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑗))
207197, 206ge0p1rpd 13001 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑗) + 1) ∈ ℝ+)
20889a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 1)
209194, 207, 208divge0d 13011 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑗) + 1)))
21030adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑁 ∈ ℝ)
211195, 210remulcld 11180 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑁) ∈ ℝ)
21294adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑁)
213195, 210, 198, 212mulge0d 11731 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑁))
214211, 213ge0p1rpd 13001 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ+)
215194, 214, 208divge0d 13011 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑁) + 1)))
216189, 190, 215expge0d 14105 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
217186, 191, 209, 216mulge0d 11731 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
218217, 177breqtrrd 5130 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (𝐾𝑗))
219108, 109, 170, 193, 218iserge0 15603 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
220 seq1 13955 . . . . . . . 8 (1 ∈ ℤ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
221100, 220mp1i 13 . . . . . . 7 (𝑁 ∈ ℕ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
222221oveq2d 7385 . . . . . 6 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)) = (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
223219, 222breqtrd 5128 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
2241, 107, 59, 223leadd1dd 11768 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) ≤ ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)))
22550, 49eqeltrd 2828 . . . . 5 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℂ)
226225addlidd 11351 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) = (𝐾‘1))
22773recnd 11178 . . . . . 6 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℂ)
22884recnd 11178 . . . . . 6 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℂ)
229227, 228subcld 11509 . . . . 5 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℂ)
230229, 225npcand 11513 . . . 4 (𝑁 ∈ ℕ → ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)) = ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
231224, 226, 2303brtr3d 5133 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ≤ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
2321, 59, 85, 106, 231ltletrd 11310 . 2 (𝑁 ∈ ℕ → 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
23384, 73posdifd 11741 . 2 (𝑁 ∈ ℕ → ((𝐵‘(𝑁 + 1)) < (𝐵𝑁) ↔ 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1)))))
234232, 233mpbird 257 1 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3911   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  cc 11042  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  2c2 12217  3c3 12218  0cn0 12418  cz 12505  cuz 12769  +crp 12927  seqcseq 13942  cexp 14002  !cfa 14214  csqrt 15175  eceu 16004  logclog 26496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-e 16010  df-sin 16011  df-cos 16012  df-tan 16013  df-pi 16014  df-dvds 16199  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-mulg 18982  df-cntz 19231  df-cmn 19696  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-cmp 23307  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-xms 24241  df-ms 24242  df-tms 24243  df-cncf 24804  df-limc 25800  df-dv 25801  df-ulm 26319  df-log 26498  df-cxp 26499
This theorem is referenced by:  stirlinglem13  46077
  Copyright terms: Public domain W3C validator