Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem11 Structured version   Visualization version   GIF version

Theorem stirlinglem11 46192
Description: 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem11.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem11.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem11.3 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
Assertion
Ref Expression
stirlinglem11 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐾   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐾(𝑘)

Proof of Theorem stirlinglem11
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0red 11115 . . 3 (𝑁 ∈ ℕ → 0 ∈ ℝ)
2 stirlinglem11.3 . . . . . 6 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
32a1i 11 . . . . 5 (𝑁 ∈ ℕ → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
4 simpr 484 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → 𝑘 = 1)
54oveq2d 7362 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (2 · 𝑘) = (2 · 1))
65oveq1d 7361 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((2 · 𝑘) + 1) = ((2 · 1) + 1))
76oveq2d 7362 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 1) + 1)))
85oveq2d 7362 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 1)))
97, 8oveq12d 7364 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
10 1nn 12136 . . . . . 6 1 ∈ ℕ
1110a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℕ)
12 2cnd 12203 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℂ)
13 1cnd 11107 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1412, 13mulcld 11132 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℂ)
1514, 13addcld 11131 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℂ)
16 2t1e2 12283 . . . . . . . . . . 11 (2 · 1) = 2
1716oveq1i 7356 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
18 2p1e3 12262 . . . . . . . . . 10 (2 + 1) = 3
1917, 18eqtri 2754 . . . . . . . . 9 ((2 · 1) + 1) = 3
20 3ne0 12231 . . . . . . . . 9 3 ≠ 0
2119, 20eqnetri 2998 . . . . . . . 8 ((2 · 1) + 1) ≠ 0
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ≠ 0)
2315, 22reccld 11890 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℂ)
24 nncn 12133 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2512, 24mulcld 11132 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
2625, 13addcld 11131 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
27 1red 11113 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
28 2re 12199 . . . . . . . . . . . . 13 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
30 nnre 12132 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3129, 30remulcld 11142 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
3231, 27readdcld 11141 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
33 0lt1 11639 . . . . . . . . . . 11 0 < 1
3433a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 1)
35 2rp 12895 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
37 nnrp 12902 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3836, 37rpmulcld 12950 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3927, 38ltaddrp2d 12968 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
401, 27, 32, 34, 39lttrd 11274 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4140gt0ne0d 11681 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
4226, 41reccld 11890 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
43 2nn0 12398 . . . . . . . . 9 2 ∈ ℕ0
4443a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
45 1nn0 12397 . . . . . . . . 9 1 ∈ ℕ0
4645a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
4744, 46nn0mulcld 12447 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℕ0)
4842, 47expcld 14053 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℂ)
4923, 48mulcld 11132 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℂ)
503, 9, 11, 49fvmptd 6936 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
51 1re 11112 . . . . . . . . 9 1 ∈ ℝ
5228, 51remulcli 11128 . . . . . . . 8 (2 · 1) ∈ ℝ
5352, 51readdcli 11127 . . . . . . 7 ((2 · 1) + 1) ∈ ℝ
5453, 21rereccli 11886 . . . . . 6 (1 / ((2 · 1) + 1)) ∈ ℝ
5554a1i 11 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ)
5632, 41rereccld 11948 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
5756, 47reexpcld 14070 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ)
5855, 57remulcld 11142 . . . 4 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ)
5950, 58eqeltrd 2831 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ)
60 stirlinglem11.1 . . . . . . . 8 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6160stirlinglem2 46183 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
6261relogcld 26559 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
63 nfcv 2894 . . . . . . 7 𝑛𝑁
64 nfcv 2894 . . . . . . . 8 𝑛log
65 nfmpt1 5188 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6660, 65nfcxfr 2892 . . . . . . . . 9 𝑛𝐴
6766, 63nffv 6832 . . . . . . . 8 𝑛(𝐴𝑁)
6864, 67nffv 6832 . . . . . . 7 𝑛(log‘(𝐴𝑁))
69 2fveq3 6827 . . . . . . 7 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
70 stirlinglem11.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
7163, 68, 69, 70fvmptf 6950 . . . . . 6 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
7262, 71mpdan 687 . . . . 5 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
7372, 62eqeltrd 2831 . . . 4 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
74 peano2nn 12137 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
7560stirlinglem2 46183 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7776relogcld 26559 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ)
78 nfcv 2894 . . . . . . 7 𝑛(𝑁 + 1)
7966, 78nffv 6832 . . . . . . . 8 𝑛(𝐴‘(𝑁 + 1))
8064, 79nffv 6832 . . . . . . 7 𝑛(log‘(𝐴‘(𝑁 + 1)))
81 2fveq3 6827 . . . . . . 7 (𝑛 = (𝑁 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑁 + 1))))
8278, 80, 81, 70fvmptf 6950 . . . . . 6 (((𝑁 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ) → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8374, 77, 82syl2anc 584 . . . . 5 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8483, 77eqeltrd 2831 . . . 4 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℝ)
8573, 84resubcld 11545 . . 3 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℝ)
8629, 27remulcld 11142 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℝ)
87 0le2 12227 . . . . . . . . . 10 0 ≤ 2
8887a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 2)
89 0le1 11640 . . . . . . . . . 10 0 ≤ 1
9089a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 1)
9129, 27, 88, 90mulge0d 11694 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ (2 · 1))
9286, 91ge0p1rpd 12964 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℝ+)
9392rpreccld 12944 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ+)
9437rpge0d 12938 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
9529, 30, 88, 94mulge0d 11694 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
9631, 95ge0p1rpd 12964 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
9796rpreccld 12944 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
98 2z 12504 . . . . . . . . 9 2 ∈ ℤ
9998a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℤ)
100 1z 12502 . . . . . . . . 9 1 ∈ ℤ
101100a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℤ)
10299, 101zmulcld 12583 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℤ)
10397, 102rpexpcld 14154 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ+)
10493, 103rpmulcld 12950 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ+)
10550, 104eqeltrd 2831 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ+)
106105rpgt0d 12937 . . 3 (𝑁 ∈ ℕ → 0 < (𝐾‘1))
10785, 59resubcld 11545 . . . . 5 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) ∈ ℝ)
108 eqid 2731 . . . . . . 7 (ℤ‘(1 + 1)) = (ℤ‘(1 + 1))
109101peano2zd 12580 . . . . . . 7 (𝑁 ∈ ℕ → (1 + 1) ∈ ℤ)
110 nnuz 12775 . . . . . . . 8 ℕ = (ℤ‘1)
1112a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
112 oveq2 7354 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
113112oveq1d 7361 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
114113oveq2d 7362 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑗) + 1)))
115112oveq2d 7362 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
116114, 115oveq12d 7364 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
117116adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝑗) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
118 simpr 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
119 2cnd 12203 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℂ)
120 nncn 12133 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
121120adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
122119, 121mulcld 11132 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
123 1cnd 11107 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
124122, 123addcld 11131 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℂ)
125 0red 11115 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℝ)
126 1red 11113 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
12728a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ)
128 nnre 12132 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
129128adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ)
130127, 129remulcld 11142 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ)
131130, 126readdcld 11141 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℝ)
13233a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < 1)
13335a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
134 nnrp 12902 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
135134adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
136133, 135rpmulcld 12950 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ+)
137126, 136ltaddrp2d 12968 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 < ((2 · 𝑗) + 1))
138125, 126, 131, 132, 137lttrd 11274 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < ((2 · 𝑗) + 1))
139138gt0ne0d 11681 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
140124, 139reccld 11890 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
14124adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑁 ∈ ℂ)
142119, 141mulcld 11132 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
143142, 123addcld 11131 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ∈ ℂ)
14441adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ≠ 0)
145143, 144reccld 11890 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
14643a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℕ0)
147 nnnn0 12388 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
148147adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
149146, 148nn0mulcld 12447 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ0)
150145, 149expcld 14053 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℂ)
151140, 150mulcld 11132 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
152111, 117, 118, 151fvmptd 6936 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
153 0red 11115 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 ∈ ℝ)
154 1red 11113 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 ∈ ℝ)
15528a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ)
156155, 128remulcld 11142 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
157156, 154readdcld 11141 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
15833a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < 1)
15935a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
160159, 134rpmulcld 12950 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
161154, 160ltaddrp2d 12968 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
162153, 154, 157, 158, 161lttrd 11274 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
163162gt0ne0d 11681 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
164163adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
165124, 164reccld 11890 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
166165, 150mulcld 11132 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
167152, 166eqeltrd 2831 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) ∈ ℂ)
168 eqid 2731 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
16960, 70, 168, 2stirlinglem9 46190 . . . . . . . 8 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
170110, 11, 167, 169clim2ser 15562 . . . . . . 7 (𝑁 ∈ ℕ → seq(1 + 1)( + , 𝐾) ⇝ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
171 peano2nn 12137 . . . . . . . . . . . . 13 (1 ∈ ℕ → (1 + 1) ∈ ℕ)
172 uznnssnn 12793 . . . . . . . . . . . . 13 ((1 + 1) ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
17310, 171, 172mp2b 10 . . . . . . . . . . . 12 (ℤ‘(1 + 1)) ⊆ ℕ
174173a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
175174sseld 3928 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ))
176175imdistani 568 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ))
177176, 152syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
17828a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ∈ ℝ)
179 eluzelre 12743 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℝ)
180178, 179remulcld 11142 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → (2 · 𝑗) ∈ ℝ)
181 1red 11113 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 1 ∈ ℝ)
182180, 181readdcld 11141 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ∈ ℝ)
183173sseli 3925 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ)
184183, 163syl 17 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ≠ 0)
185182, 184rereccld 11948 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
186185adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
18732adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ)
18841adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ≠ 0)
189187, 188rereccld 11948 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
190176, 149syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℕ0)
191189, 190reexpcld 14070 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℝ)
192186, 191remulcld 11142 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℝ)
193177, 192eqeltrd 2831 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) ∈ ℝ)
194 1red 11113 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 1 ∈ ℝ)
19528a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 2 ∈ ℝ)
196176, 129syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑗 ∈ ℝ)
197195, 196remulcld 11142 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℝ)
19887a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 2)
199 0red 11115 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ∈ ℝ)
20087a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 2)
201 1p1e2 12245 . . . . . . . . . . . . . . 15 (1 + 1) = 2
202 eluzle 12745 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 + 1) ≤ 𝑗)
203201, 202eqbrtrrid 5125 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ≤ 𝑗)
204199, 178, 179, 200, 203letrd 11270 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 𝑗)
205204adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑗)
206195, 196, 198, 205mulge0d 11694 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑗))
207197, 206ge0p1rpd 12964 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑗) + 1) ∈ ℝ+)
20889a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 1)
209194, 207, 208divge0d 12974 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑗) + 1)))
21030adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑁 ∈ ℝ)
211195, 210remulcld 11142 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑁) ∈ ℝ)
21294adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑁)
213195, 210, 198, 212mulge0d 11694 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑁))
214211, 213ge0p1rpd 12964 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ+)
215194, 214, 208divge0d 12974 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑁) + 1)))
216189, 190, 215expge0d 14071 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
217186, 191, 209, 216mulge0d 11694 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
218217, 177breqtrrd 5117 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (𝐾𝑗))
219108, 109, 170, 193, 218iserge0 15568 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
220 seq1 13921 . . . . . . . 8 (1 ∈ ℤ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
221100, 220mp1i 13 . . . . . . 7 (𝑁 ∈ ℕ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
222221oveq2d 7362 . . . . . 6 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)) = (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
223219, 222breqtrd 5115 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
2241, 107, 59, 223leadd1dd 11731 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) ≤ ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)))
22550, 49eqeltrd 2831 . . . . 5 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℂ)
226225addlidd 11314 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) = (𝐾‘1))
22773recnd 11140 . . . . . 6 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℂ)
22884recnd 11140 . . . . . 6 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℂ)
229227, 228subcld 11472 . . . . 5 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℂ)
230229, 225npcand 11476 . . . 4 (𝑁 ∈ ℕ → ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)) = ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
231224, 226, 2303brtr3d 5120 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ≤ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
2321, 59, 85, 106, 231ltletrd 11273 . 2 (𝑁 ∈ ℕ → 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
23384, 73posdifd 11704 . 2 (𝑁 ∈ ℕ → ((𝐵‘(𝑁 + 1)) < (𝐵𝑁) ↔ 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1)))))
234232, 233mpbird 257 1 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  wss 3897   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  cn 12125  2c2 12180  3c3 12181  0cn0 12381  cz 12468  cuz 12732  +crp 12890  seqcseq 13908  cexp 13968  !cfa 14180  csqrt 15140  eceu 15969  logclog 26490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-xnn0 12455  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-e 15975  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-dvds 16164  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-haus 23230  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795  df-ulm 26313  df-log 26492  df-cxp 26493
This theorem is referenced by:  stirlinglem13  46194
  Copyright terms: Public domain W3C validator