Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  stirlinglem11 Structured version   Visualization version   GIF version

Theorem stirlinglem11 43515
Description: 𝐵 is decreasing. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
stirlinglem11.1 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
stirlinglem11.2 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
stirlinglem11.3 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
Assertion
Ref Expression
stirlinglem11 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Distinct variable groups:   𝑘,𝑛   𝑛,𝐾   𝑘,𝑁,𝑛
Allowed substitution hints:   𝐴(𝑘,𝑛)   𝐵(𝑘,𝑛)   𝐾(𝑘)

Proof of Theorem stirlinglem11
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 0red 10909 . . 3 (𝑁 ∈ ℕ → 0 ∈ ℝ)
2 stirlinglem11.3 . . . . . 6 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))))
32a1i 11 . . . . 5 (𝑁 ∈ ℕ → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
4 simpr 484 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → 𝑘 = 1)
54oveq2d 7271 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (2 · 𝑘) = (2 · 1))
65oveq1d 7270 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((2 · 𝑘) + 1) = ((2 · 1) + 1))
76oveq2d 7271 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 1) + 1)))
85oveq2d 7271 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 1)))
97, 8oveq12d 7273 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝑘 = 1) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
10 1nn 11914 . . . . . 6 1 ∈ ℕ
1110a1i 11 . . . . 5 (𝑁 ∈ ℕ → 1 ∈ ℕ)
12 2cnd 11981 . . . . . . . . 9 (𝑁 ∈ ℕ → 2 ∈ ℂ)
13 1cnd 10901 . . . . . . . . 9 (𝑁 ∈ ℕ → 1 ∈ ℂ)
1412, 13mulcld 10926 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℂ)
1514, 13addcld 10925 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℂ)
16 2t1e2 12066 . . . . . . . . . . 11 (2 · 1) = 2
1716oveq1i 7265 . . . . . . . . . 10 ((2 · 1) + 1) = (2 + 1)
18 2p1e3 12045 . . . . . . . . . 10 (2 + 1) = 3
1917, 18eqtri 2766 . . . . . . . . 9 ((2 · 1) + 1) = 3
20 3ne0 12009 . . . . . . . . 9 3 ≠ 0
2119, 20eqnetri 3013 . . . . . . . 8 ((2 · 1) + 1) ≠ 0
2221a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ≠ 0)
2315, 22reccld 11674 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℂ)
24 nncn 11911 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
2512, 24mulcld 10926 . . . . . . . . 9 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℂ)
2625, 13addcld 10925 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℂ)
27 1red 10907 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 ∈ ℝ)
28 2re 11977 . . . . . . . . . . . . 13 2 ∈ ℝ
2928a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ)
30 nnre 11910 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
3129, 30remulcld 10936 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ)
3231, 27readdcld 10935 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ)
33 0lt1 11427 . . . . . . . . . . 11 0 < 1
3433a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 < 1)
35 2rp 12664 . . . . . . . . . . . . 13 2 ∈ ℝ+
3635a1i 11 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 2 ∈ ℝ+)
37 nnrp 12670 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3836, 37rpmulcld 12717 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (2 · 𝑁) ∈ ℝ+)
3927, 38ltaddrp2d 12735 . . . . . . . . . 10 (𝑁 ∈ ℕ → 1 < ((2 · 𝑁) + 1))
401, 27, 32, 34, 39lttrd 11066 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 < ((2 · 𝑁) + 1))
4140gt0ne0d 11469 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ≠ 0)
4226, 41reccld 11674 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
43 2nn0 12180 . . . . . . . . 9 2 ∈ ℕ0
4443a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℕ0)
45 1nn0 12179 . . . . . . . . 9 1 ∈ ℕ0
4645a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℕ0)
4744, 46nn0mulcld 12228 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℕ0)
4842, 47expcld 13792 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℂ)
4923, 48mulcld 10926 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℂ)
503, 9, 11, 49fvmptd 6864 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) = ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))))
51 1re 10906 . . . . . . . . 9 1 ∈ ℝ
5228, 51remulcli 10922 . . . . . . . 8 (2 · 1) ∈ ℝ
5352, 51readdcli 10921 . . . . . . 7 ((2 · 1) + 1) ∈ ℝ
5453, 21rereccli 11670 . . . . . 6 (1 / ((2 · 1) + 1)) ∈ ℝ
5554a1i 11 . . . . 5 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ)
5632, 41rereccld 11732 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
5756, 47reexpcld 13809 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ)
5855, 57remulcld 10936 . . . 4 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ)
5950, 58eqeltrd 2839 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ)
60 stirlinglem11.1 . . . . . . . 8 𝐴 = (𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6160stirlinglem2 43506 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴𝑁) ∈ ℝ+)
6261relogcld 25683 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴𝑁)) ∈ ℝ)
63 nfcv 2906 . . . . . . 7 𝑛𝑁
64 nfcv 2906 . . . . . . . 8 𝑛log
65 nfmpt1 5178 . . . . . . . . . 10 𝑛(𝑛 ∈ ℕ ↦ ((!‘𝑛) / ((√‘(2 · 𝑛)) · ((𝑛 / e)↑𝑛))))
6660, 65nfcxfr 2904 . . . . . . . . 9 𝑛𝐴
6766, 63nffv 6766 . . . . . . . 8 𝑛(𝐴𝑁)
6864, 67nffv 6766 . . . . . . 7 𝑛(log‘(𝐴𝑁))
69 2fveq3 6761 . . . . . . 7 (𝑛 = 𝑁 → (log‘(𝐴𝑛)) = (log‘(𝐴𝑁)))
70 stirlinglem11.2 . . . . . . 7 𝐵 = (𝑛 ∈ ℕ ↦ (log‘(𝐴𝑛)))
7163, 68, 69, 70fvmptf 6878 . . . . . 6 ((𝑁 ∈ ℕ ∧ (log‘(𝐴𝑁)) ∈ ℝ) → (𝐵𝑁) = (log‘(𝐴𝑁)))
7262, 71mpdan 683 . . . . 5 (𝑁 ∈ ℕ → (𝐵𝑁) = (log‘(𝐴𝑁)))
7372, 62eqeltrd 2839 . . . 4 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℝ)
74 peano2nn 11915 . . . . . 6 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
7560stirlinglem2 43506 . . . . . . . 8 ((𝑁 + 1) ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7674, 75syl 17 . . . . . . 7 (𝑁 ∈ ℕ → (𝐴‘(𝑁 + 1)) ∈ ℝ+)
7776relogcld 25683 . . . . . 6 (𝑁 ∈ ℕ → (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ)
78 nfcv 2906 . . . . . . 7 𝑛(𝑁 + 1)
7966, 78nffv 6766 . . . . . . . 8 𝑛(𝐴‘(𝑁 + 1))
8064, 79nffv 6766 . . . . . . 7 𝑛(log‘(𝐴‘(𝑁 + 1)))
81 2fveq3 6761 . . . . . . 7 (𝑛 = (𝑁 + 1) → (log‘(𝐴𝑛)) = (log‘(𝐴‘(𝑁 + 1))))
8278, 80, 81, 70fvmptf 6878 . . . . . 6 (((𝑁 + 1) ∈ ℕ ∧ (log‘(𝐴‘(𝑁 + 1))) ∈ ℝ) → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8374, 77, 82syl2anc 583 . . . . 5 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) = (log‘(𝐴‘(𝑁 + 1))))
8483, 77eqeltrd 2839 . . . 4 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℝ)
8573, 84resubcld 11333 . . 3 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℝ)
8629, 27remulcld 10936 . . . . . . . 8 (𝑁 ∈ ℕ → (2 · 1) ∈ ℝ)
87 0le2 12005 . . . . . . . . . 10 0 ≤ 2
8887a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 2)
89 0le1 11428 . . . . . . . . . 10 0 ≤ 1
9089a1i 11 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ 1)
9129, 27, 88, 90mulge0d 11482 . . . . . . . 8 (𝑁 ∈ ℕ → 0 ≤ (2 · 1))
9286, 91ge0p1rpd 12731 . . . . . . 7 (𝑁 ∈ ℕ → ((2 · 1) + 1) ∈ ℝ+)
9392rpreccld 12711 . . . . . 6 (𝑁 ∈ ℕ → (1 / ((2 · 1) + 1)) ∈ ℝ+)
9437rpge0d 12705 . . . . . . . . . 10 (𝑁 ∈ ℕ → 0 ≤ 𝑁)
9529, 30, 88, 94mulge0d 11482 . . . . . . . . 9 (𝑁 ∈ ℕ → 0 ≤ (2 · 𝑁))
9631, 95ge0p1rpd 12731 . . . . . . . 8 (𝑁 ∈ ℕ → ((2 · 𝑁) + 1) ∈ ℝ+)
9796rpreccld 12711 . . . . . . 7 (𝑁 ∈ ℕ → (1 / ((2 · 𝑁) + 1)) ∈ ℝ+)
98 2z 12282 . . . . . . . . 9 2 ∈ ℤ
9998a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 2 ∈ ℤ)
100 1z 12280 . . . . . . . . 9 1 ∈ ℤ
101100a1i 11 . . . . . . . 8 (𝑁 ∈ ℕ → 1 ∈ ℤ)
10299, 101zmulcld 12361 . . . . . . 7 (𝑁 ∈ ℕ → (2 · 1) ∈ ℤ)
10397, 102rpexpcld 13890 . . . . . 6 (𝑁 ∈ ℕ → ((1 / ((2 · 𝑁) + 1))↑(2 · 1)) ∈ ℝ+)
10493, 103rpmulcld 12717 . . . . 5 (𝑁 ∈ ℕ → ((1 / ((2 · 1) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 1))) ∈ ℝ+)
10550, 104eqeltrd 2839 . . . 4 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℝ+)
106105rpgt0d 12704 . . 3 (𝑁 ∈ ℕ → 0 < (𝐾‘1))
10785, 59resubcld 11333 . . . . 5 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) ∈ ℝ)
108 eqid 2738 . . . . . . 7 (ℤ‘(1 + 1)) = (ℤ‘(1 + 1))
109101peano2zd 12358 . . . . . . 7 (𝑁 ∈ ℕ → (1 + 1) ∈ ℤ)
110 nnuz 12550 . . . . . . . 8 ℕ = (ℤ‘1)
1112a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝐾 = (𝑘 ∈ ℕ ↦ ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)))))
112 oveq2 7263 . . . . . . . . . . . . . 14 (𝑘 = 𝑗 → (2 · 𝑘) = (2 · 𝑗))
113112oveq1d 7270 . . . . . . . . . . . . 13 (𝑘 = 𝑗 → ((2 · 𝑘) + 1) = ((2 · 𝑗) + 1))
114113oveq2d 7271 . . . . . . . . . . . 12 (𝑘 = 𝑗 → (1 / ((2 · 𝑘) + 1)) = (1 / ((2 · 𝑗) + 1)))
115112oveq2d 7271 . . . . . . . . . . . 12 (𝑘 = 𝑗 → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘)) = ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
116114, 115oveq12d 7273 . . . . . . . . . . 11 (𝑘 = 𝑗 → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
117116adantl 481 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) ∧ 𝑘 = 𝑗) → ((1 / ((2 · 𝑘) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑘))) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
118 simpr 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ)
119 2cnd 11981 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℂ)
120 nncn 11911 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → 𝑗 ∈ ℂ)
121120adantl 481 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℂ)
122119, 121mulcld 10926 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℂ)
123 1cnd 10901 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℂ)
124122, 123addcld 10925 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℂ)
125 0red 10909 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 ∈ ℝ)
126 1red 10907 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 ∈ ℝ)
12728a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ)
128 nnre 11910 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ)
129128adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ)
130127, 129remulcld 10936 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ)
131130, 126readdcld 10935 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ∈ ℝ)
13233a1i 11 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < 1)
13335a1i 11 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℝ+)
134 nnrp 12670 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ℕ → 𝑗 ∈ ℝ+)
135134adantl 481 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℝ+)
136133, 135rpmulcld 12717 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℝ+)
137126, 136ltaddrp2d 12735 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 1 < ((2 · 𝑗) + 1))
138125, 126, 131, 132, 137lttrd 11066 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 0 < ((2 · 𝑗) + 1))
139138gt0ne0d 11469 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
140124, 139reccld 11674 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
14124adantr 480 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑁 ∈ ℂ)
142119, 141mulcld 10926 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑁) ∈ ℂ)
143142, 123addcld 10925 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ∈ ℂ)
14441adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑁) + 1) ≠ 0)
145143, 144reccld 11674 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑁) + 1)) ∈ ℂ)
14643a1i 11 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 2 ∈ ℕ0)
147 nnnn0 12170 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 𝑗 ∈ ℕ0)
148147adantl 481 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → 𝑗 ∈ ℕ0)
149146, 148nn0mulcld 12228 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (2 · 𝑗) ∈ ℕ0)
150145, 149expcld 13792 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℂ)
151140, 150mulcld 10926 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
152111, 117, 118, 151fvmptd 6864 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
153 0red 10909 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 ∈ ℝ)
154 1red 10907 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 ∈ ℝ)
15528a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ)
156155, 128remulcld 10936 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ)
157156, 154readdcld 10935 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ∈ ℝ)
15833a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 0 < 1)
15935a1i 11 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ℕ → 2 ∈ ℝ+)
160159, 134rpmulcld 12717 . . . . . . . . . . . . . . 15 (𝑗 ∈ ℕ → (2 · 𝑗) ∈ ℝ+)
161154, 160ltaddrp2d 12735 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ → 1 < ((2 · 𝑗) + 1))
162153, 154, 157, 158, 161lttrd 11066 . . . . . . . . . . . . 13 (𝑗 ∈ ℕ → 0 < ((2 · 𝑗) + 1))
163162gt0ne0d 11469 . . . . . . . . . . . 12 (𝑗 ∈ ℕ → ((2 · 𝑗) + 1) ≠ 0)
164163adantl 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((2 · 𝑗) + 1) ≠ 0)
165124, 164reccld 11674 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (1 / ((2 · 𝑗) + 1)) ∈ ℂ)
166165, 150mulcld 10926 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℂ)
167152, 166eqeltrd 2839 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ) → (𝐾𝑗) ∈ ℂ)
168 eqid 2738 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1)) = (𝑛 ∈ ℕ ↦ ((((1 + (2 · 𝑛)) / 2) · (log‘((𝑛 + 1) / 𝑛))) − 1))
16960, 70, 168, 2stirlinglem9 43513 . . . . . . . 8 (𝑁 ∈ ℕ → seq1( + , 𝐾) ⇝ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
170110, 11, 167, 169clim2ser 15294 . . . . . . 7 (𝑁 ∈ ℕ → seq(1 + 1)( + , 𝐾) ⇝ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
171 peano2nn 11915 . . . . . . . . . . . . 13 (1 ∈ ℕ → (1 + 1) ∈ ℕ)
172 uznnssnn 12564 . . . . . . . . . . . . 13 ((1 + 1) ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
17310, 171, 172mp2b 10 . . . . . . . . . . . 12 (ℤ‘(1 + 1)) ⊆ ℕ
174173a1i 11 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (ℤ‘(1 + 1)) ⊆ ℕ)
175174sseld 3916 . . . . . . . . . 10 (𝑁 ∈ ℕ → (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ))
176175imdistani 568 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝑁 ∈ ℕ ∧ 𝑗 ∈ ℕ))
177176, 152syl 17 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) = ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
17828a1i 11 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ∈ ℝ)
179 eluzelre 12522 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℝ)
180178, 179remulcld 10936 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → (2 · 𝑗) ∈ ℝ)
181 1red 10907 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 1 ∈ ℝ)
182180, 181readdcld 10935 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ∈ ℝ)
183173sseli 3913 . . . . . . . . . . . 12 (𝑗 ∈ (ℤ‘(1 + 1)) → 𝑗 ∈ ℕ)
184183, 163syl 17 . . . . . . . . . . 11 (𝑗 ∈ (ℤ‘(1 + 1)) → ((2 · 𝑗) + 1) ≠ 0)
185182, 184rereccld 11732 . . . . . . . . . 10 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
186185adantl 481 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑗) + 1)) ∈ ℝ)
18732adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ)
18841adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ≠ 0)
189187, 188rereccld 11732 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (1 / ((2 · 𝑁) + 1)) ∈ ℝ)
190176, 149syl 17 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℕ0)
191189, 190reexpcld 13809 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)) ∈ ℝ)
192186, 191remulcld 10936 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))) ∈ ℝ)
193177, 192eqeltrd 2839 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (𝐾𝑗) ∈ ℝ)
194 1red 10907 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 1 ∈ ℝ)
19528a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 2 ∈ ℝ)
196176, 129syl 17 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑗 ∈ ℝ)
197195, 196remulcld 10936 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑗) ∈ ℝ)
19887a1i 11 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 2)
199 0red 10909 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ∈ ℝ)
20087a1i 11 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 2)
201 1p1e2 12028 . . . . . . . . . . . . . . 15 (1 + 1) = 2
202 eluzle 12524 . . . . . . . . . . . . . . 15 (𝑗 ∈ (ℤ‘(1 + 1)) → (1 + 1) ≤ 𝑗)
203201, 202eqbrtrrid 5106 . . . . . . . . . . . . . 14 (𝑗 ∈ (ℤ‘(1 + 1)) → 2 ≤ 𝑗)
204199, 178, 179, 200, 203letrd 11062 . . . . . . . . . . . . 13 (𝑗 ∈ (ℤ‘(1 + 1)) → 0 ≤ 𝑗)
205204adantl 481 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑗)
206195, 196, 198, 205mulge0d 11482 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑗))
207197, 206ge0p1rpd 12731 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑗) + 1) ∈ ℝ+)
20889a1i 11 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 1)
209194, 207, 208divge0d 12741 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑗) + 1)))
21030adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 𝑁 ∈ ℝ)
211195, 210remulcld 10936 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → (2 · 𝑁) ∈ ℝ)
21294adantr 480 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ 𝑁)
213195, 210, 198, 212mulge0d 11482 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (2 · 𝑁))
214211, 213ge0p1rpd 12731 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → ((2 · 𝑁) + 1) ∈ ℝ+)
215194, 214, 208divge0d 12741 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (1 / ((2 · 𝑁) + 1)))
216189, 190, 215expge0d 13810 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗)))
217186, 191, 209, 216mulge0d 11482 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ ((1 / ((2 · 𝑗) + 1)) · ((1 / ((2 · 𝑁) + 1))↑(2 · 𝑗))))
218217, 177breqtrrd 5098 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑗 ∈ (ℤ‘(1 + 1))) → 0 ≤ (𝐾𝑗))
219108, 109, 170, 193, 218iserge0 15300 . . . . . 6 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)))
220 seq1 13662 . . . . . . . 8 (1 ∈ ℤ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
221100, 220mp1i 13 . . . . . . 7 (𝑁 ∈ ℕ → (seq1( + , 𝐾)‘1) = (𝐾‘1))
222221oveq2d 7271 . . . . . 6 (𝑁 ∈ ℕ → (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (seq1( + , 𝐾)‘1)) = (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
223219, 222breqtrd 5096 . . . . 5 (𝑁 ∈ ℕ → 0 ≤ (((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)))
2241, 107, 59, 223leadd1dd 11519 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) ≤ ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)))
22550, 49eqeltrd 2839 . . . . 5 (𝑁 ∈ ℕ → (𝐾‘1) ∈ ℂ)
226225addid2d 11106 . . . 4 (𝑁 ∈ ℕ → (0 + (𝐾‘1)) = (𝐾‘1))
22773recnd 10934 . . . . . 6 (𝑁 ∈ ℕ → (𝐵𝑁) ∈ ℂ)
22884recnd 10934 . . . . . 6 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) ∈ ℂ)
229227, 228subcld 11262 . . . . 5 (𝑁 ∈ ℕ → ((𝐵𝑁) − (𝐵‘(𝑁 + 1))) ∈ ℂ)
230229, 225npcand 11266 . . . 4 (𝑁 ∈ ℕ → ((((𝐵𝑁) − (𝐵‘(𝑁 + 1))) − (𝐾‘1)) + (𝐾‘1)) = ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
231224, 226, 2303brtr3d 5101 . . 3 (𝑁 ∈ ℕ → (𝐾‘1) ≤ ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
2321, 59, 85, 106, 231ltletrd 11065 . 2 (𝑁 ∈ ℕ → 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1))))
23384, 73posdifd 11492 . 2 (𝑁 ∈ ℕ → ((𝐵‘(𝑁 + 1)) < (𝐵𝑁) ↔ 0 < ((𝐵𝑁) − (𝐵‘(𝑁 + 1)))))
234232, 233mpbird 256 1 (𝑁 ∈ ℕ → (𝐵‘(𝑁 + 1)) < (𝐵𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  3c3 11959  0cn0 12163  cz 12249  cuz 12511  +crp 12659  seqcseq 13649  cexp 13710  !cfa 13915  csqrt 14872  eceu 15700  logclog 25615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-cxp 25618
This theorem is referenced by:  stirlinglem13  43517
  Copyright terms: Public domain W3C validator