![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | remulcl 11265 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 (class class class)co 7445 ℝcr 11179 · cmul 11185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11243 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ledivp1i 12216 ltdivp1i 12217 addltmul 12525 nn0lele2xi 12604 10re 12773 numltc 12780 nn0opthlem2 14314 faclbnd4lem1 14338 ef01bndlem 16226 cos2bnd 16230 sin4lt0 16237 dvdslelem 16351 divalglem1 16436 divalglem6 16440 sincosq3sgn 26552 sincosq4sgn 26553 sincos4thpi 26565 cos02pilt1 26577 cosq34lt1 26578 cos0pilt1 26583 efif1olem1 26593 efif1olem2 26594 efif1olem4 26596 efif1o 26597 efifo 26598 ang180lem1 26861 ang180lem2 26862 log2ublem1 26998 log2ublem2 26999 bpos1lem 27335 bposlem7 27343 bposlem8 27344 bposlem9 27345 chebbnd1lem3 27524 chebbnd1 27525 chto1ub 27529 siilem1 30874 normlem6 31138 normlem7 31139 norm-ii-i 31160 bcsiALT 31202 nmopadjlem 32112 nmopcoi 32118 bdopcoi 32121 nmopcoadji 32124 unierri 32127 dpmul4 32870 hgt750lem 34620 hgt750lem2 34621 hgt750leme 34627 problem5 35629 circum 35634 iexpire 35689 taupi 37237 sin2h 37518 tan2h 37520 sumnnodd 45485 sinaover2ne0 45723 stirlinglem11 45939 dirkerper 45951 dirkercncflem2 45959 dirkercncflem4 45961 fourierdlem24 45986 fourierdlem43 46005 fourierdlem44 46006 fourierdlem68 46029 fourierdlem94 46055 fourierdlem111 46072 fourierdlem113 46074 sqwvfoura 46083 sqwvfourb 46084 fourierswlem 46085 fouriersw 46086 lighneallem4a 47414 tgoldbach 47623 |
Copyright terms: Public domain | W3C validator |