Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | remulcl 10965 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 (class class class)co 7284 ℝcr 10879 · cmul 10885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 10943 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: ledivp1i 11909 ltdivp1i 11910 addltmul 12218 nn0lele2xi 12297 10re 12465 numltc 12472 nn0opthlem2 13992 faclbnd4lem1 14016 ef01bndlem 15902 cos2bnd 15906 sin4lt0 15913 dvdslelem 16027 divalglem1 16112 divalglem6 16116 sincosq3sgn 25666 sincosq4sgn 25667 sincos4thpi 25679 cos02pilt1 25691 cosq34lt1 25692 cos0pilt1 25697 efif1olem1 25707 efif1olem2 25708 efif1olem4 25710 efif1o 25711 efifo 25712 ang180lem1 25968 ang180lem2 25969 log2ublem1 26105 log2ublem2 26106 bpos1lem 26439 bposlem7 26447 bposlem8 26448 bposlem9 26449 chebbnd1lem3 26628 chebbnd1 26629 chto1ub 26633 siilem1 29222 normlem6 29486 normlem7 29487 norm-ii-i 29508 bcsiALT 29550 nmopadjlem 30460 nmopcoi 30466 bdopcoi 30469 nmopcoadji 30472 unierri 30475 dpmul4 31197 hgt750lem 32640 hgt750lem2 32641 hgt750leme 32647 problem5 33636 circum 33641 iexpire 33710 taupi 35503 sin2h 35776 tan2h 35778 sumnnodd 43178 sinaover2ne0 43416 stirlinglem11 43632 dirkerper 43644 dirkercncflem2 43652 dirkercncflem4 43654 fourierdlem24 43679 fourierdlem43 43698 fourierdlem44 43699 fourierdlem68 43722 fourierdlem94 43748 fourierdlem111 43765 fourierdlem113 43767 sqwvfoura 43776 sqwvfourb 43777 fourierswlem 43778 fouriersw 43779 lighneallem4a 45071 tgoldbach 45280 |
Copyright terms: Public domain | W3C validator |