| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | remulcl 11219 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℝcr 11133 · cmul 11139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ledivp1i 12172 ltdivp1i 12173 addltmul 12482 nn0lele2xi 12562 10re 12732 numltc 12739 nn0opthlem2 14292 faclbnd4lem1 14316 ef01bndlem 16207 cos2bnd 16211 sin4lt0 16218 dvdslelem 16333 divalglem1 16418 divalglem6 16422 sincosq3sgn 26466 sincosq4sgn 26467 sincos4thpi 26479 cos02pilt1 26492 cosq34lt1 26493 cos0pilt1 26498 efif1olem1 26508 efif1olem2 26509 efif1olem4 26511 efif1o 26512 efifo 26513 ang180lem1 26776 ang180lem2 26777 log2ublem1 26913 log2ublem2 26914 bpos1lem 27250 bposlem7 27258 bposlem8 27259 bposlem9 27260 chebbnd1lem3 27439 chebbnd1 27440 chto1ub 27444 siilem1 30837 normlem6 31101 normlem7 31102 norm-ii-i 31123 bcsiALT 31165 nmopadjlem 32075 nmopcoi 32081 bdopcoi 32084 nmopcoadji 32087 unierri 32090 dpmul4 32893 hgt750lem 34688 hgt750lem2 34689 hgt750leme 34695 problem5 35696 circum 35701 iexpire 35757 taupi 37346 sin2h 37639 tan2h 37641 sumnnodd 45639 sinaover2ne0 45877 stirlinglem11 46093 dirkerper 46105 dirkercncflem2 46113 dirkercncflem4 46115 fourierdlem24 46140 fourierdlem43 46159 fourierdlem44 46160 fourierdlem68 46183 fourierdlem94 46209 fourierdlem111 46226 fourierdlem113 46228 sqwvfoura 46237 sqwvfourb 46238 fourierswlem 46239 fouriersw 46240 lighneallem4a 47602 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |