| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | remulcl 11091 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 · cmul 11011 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ledivp1i 12047 ltdivp1i 12048 addltmul 12357 nn0lele2xi 12437 10re 12607 numltc 12614 nn0opthlem2 14176 faclbnd4lem1 14200 ef01bndlem 16093 cos2bnd 16097 sin4lt0 16104 dvdslelem 16220 divalglem1 16305 divalglem6 16309 sincosq3sgn 26436 sincosq4sgn 26437 sincos4thpi 26449 cos02pilt1 26462 cosq34lt1 26463 cos0pilt1 26468 efif1olem1 26478 efif1olem2 26479 efif1olem4 26481 efif1o 26482 efifo 26483 ang180lem1 26746 ang180lem2 26747 log2ublem1 26883 log2ublem2 26884 bpos1lem 27220 bposlem7 27228 bposlem8 27229 bposlem9 27230 chebbnd1lem3 27409 chebbnd1 27410 chto1ub 27414 siilem1 30831 normlem6 31095 normlem7 31096 norm-ii-i 31117 bcsiALT 31159 nmopadjlem 32069 nmopcoi 32075 bdopcoi 32078 nmopcoadji 32081 unierri 32084 dpmul4 32894 hgt750lem 34664 hgt750lem2 34665 hgt750leme 34671 problem5 35713 circum 35718 iexpire 35779 taupi 37367 sin2h 37660 tan2h 37662 sumnnodd 45740 sinaover2ne0 45976 stirlinglem11 46192 dirkerper 46204 dirkercncflem2 46212 dirkercncflem4 46214 fourierdlem24 46239 fourierdlem43 46258 fourierdlem44 46259 fourierdlem68 46282 fourierdlem94 46308 fourierdlem111 46325 fourierdlem113 46327 sqwvfoura 46336 sqwvfourb 46337 fourierswlem 46338 fouriersw 46339 lighneallem4a 47718 tgoldbach 47927 |
| Copyright terms: Public domain | W3C validator |