| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | remulcl 11159 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7389 ℝcr 11073 · cmul 11079 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11137 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ledivp1i 12114 ltdivp1i 12115 addltmul 12424 nn0lele2xi 12504 10re 12674 numltc 12681 nn0opthlem2 14240 faclbnd4lem1 14264 ef01bndlem 16158 cos2bnd 16162 sin4lt0 16169 dvdslelem 16285 divalglem1 16370 divalglem6 16374 sincosq3sgn 26415 sincosq4sgn 26416 sincos4thpi 26428 cos02pilt1 26441 cosq34lt1 26442 cos0pilt1 26447 efif1olem1 26457 efif1olem2 26458 efif1olem4 26460 efif1o 26461 efifo 26462 ang180lem1 26725 ang180lem2 26726 log2ublem1 26862 log2ublem2 26863 bpos1lem 27199 bposlem7 27207 bposlem8 27208 bposlem9 27209 chebbnd1lem3 27388 chebbnd1 27389 chto1ub 27393 siilem1 30786 normlem6 31050 normlem7 31051 norm-ii-i 31072 bcsiALT 31114 nmopadjlem 32024 nmopcoi 32030 bdopcoi 32033 nmopcoadji 32036 unierri 32039 dpmul4 32840 hgt750lem 34648 hgt750lem2 34649 hgt750leme 34655 problem5 35656 circum 35661 iexpire 35717 taupi 37306 sin2h 37599 tan2h 37601 sumnnodd 45621 sinaover2ne0 45859 stirlinglem11 46075 dirkerper 46087 dirkercncflem2 46095 dirkercncflem4 46097 fourierdlem24 46122 fourierdlem43 46141 fourierdlem44 46142 fourierdlem68 46165 fourierdlem94 46191 fourierdlem111 46208 fourierdlem113 46210 sqwvfoura 46219 sqwvfourb 46220 fourierswlem 46221 fouriersw 46222 lighneallem4a 47599 tgoldbach 47808 |
| Copyright terms: Public domain | W3C validator |