Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | remulcl 10887 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 · cmul 10807 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 10865 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: ledivp1i 11830 ltdivp1i 11831 addltmul 12139 nn0lele2xi 12218 10re 12385 numltc 12392 nn0opthlem2 13911 faclbnd4lem1 13935 ef01bndlem 15821 cos2bnd 15825 sin4lt0 15832 dvdslelem 15946 divalglem1 16031 divalglem6 16035 sincosq3sgn 25562 sincosq4sgn 25563 sincos4thpi 25575 cos02pilt1 25587 cosq34lt1 25588 cos0pilt1 25593 efif1olem1 25603 efif1olem2 25604 efif1olem4 25606 efif1o 25607 efifo 25608 ang180lem1 25864 ang180lem2 25865 log2ublem1 26001 log2ublem2 26002 bpos1lem 26335 bposlem7 26343 bposlem8 26344 bposlem9 26345 chebbnd1lem3 26524 chebbnd1 26525 chto1ub 26529 siilem1 29114 normlem6 29378 normlem7 29379 norm-ii-i 29400 bcsiALT 29442 nmopadjlem 30352 nmopcoi 30358 bdopcoi 30361 nmopcoadji 30364 unierri 30367 dpmul4 31090 hgt750lem 32531 hgt750lem2 32532 hgt750leme 32538 problem5 33527 circum 33532 iexpire 33607 taupi 35421 sin2h 35694 tan2h 35696 sumnnodd 43061 sinaover2ne0 43299 stirlinglem11 43515 dirkerper 43527 dirkercncflem2 43535 dirkercncflem4 43537 fourierdlem24 43562 fourierdlem43 43581 fourierdlem44 43582 fourierdlem68 43605 fourierdlem94 43631 fourierdlem111 43648 fourierdlem113 43650 sqwvfoura 43659 sqwvfourb 43660 fourierswlem 43661 fouriersw 43662 lighneallem4a 44948 tgoldbach 45157 |
Copyright terms: Public domain | W3C validator |