![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | remulcl 11238 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℝcr 11152 · cmul 11158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11216 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ledivp1i 12191 ltdivp1i 12192 addltmul 12500 nn0lele2xi 12580 10re 12750 numltc 12757 nn0opthlem2 14305 faclbnd4lem1 14329 ef01bndlem 16217 cos2bnd 16221 sin4lt0 16228 dvdslelem 16343 divalglem1 16428 divalglem6 16432 sincosq3sgn 26557 sincosq4sgn 26558 sincos4thpi 26570 cos02pilt1 26583 cosq34lt1 26584 cos0pilt1 26589 efif1olem1 26599 efif1olem2 26600 efif1olem4 26602 efif1o 26603 efifo 26604 ang180lem1 26867 ang180lem2 26868 log2ublem1 27004 log2ublem2 27005 bpos1lem 27341 bposlem7 27349 bposlem8 27350 bposlem9 27351 chebbnd1lem3 27530 chebbnd1 27531 chto1ub 27535 siilem1 30880 normlem6 31144 normlem7 31145 norm-ii-i 31166 bcsiALT 31208 nmopadjlem 32118 nmopcoi 32124 bdopcoi 32127 nmopcoadji 32130 unierri 32133 dpmul4 32881 hgt750lem 34645 hgt750lem2 34646 hgt750leme 34652 problem5 35654 circum 35659 iexpire 35715 taupi 37306 sin2h 37597 tan2h 37599 sumnnodd 45586 sinaover2ne0 45824 stirlinglem11 46040 dirkerper 46052 dirkercncflem2 46060 dirkercncflem4 46062 fourierdlem24 46087 fourierdlem43 46106 fourierdlem44 46107 fourierdlem68 46130 fourierdlem94 46156 fourierdlem111 46173 fourierdlem113 46175 sqwvfoura 46184 sqwvfourb 46185 fourierswlem 46186 fouriersw 46187 lighneallem4a 47533 tgoldbach 47742 |
Copyright terms: Public domain | W3C validator |