| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | remulcl 11129 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 · cmul 11049 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ledivp1i 12084 ltdivp1i 12085 addltmul 12394 nn0lele2xi 12474 10re 12644 numltc 12651 nn0opthlem2 14210 faclbnd4lem1 14234 ef01bndlem 16128 cos2bnd 16132 sin4lt0 16139 dvdslelem 16255 divalglem1 16340 divalglem6 16344 sincosq3sgn 26442 sincosq4sgn 26443 sincos4thpi 26455 cos02pilt1 26468 cosq34lt1 26469 cos0pilt1 26474 efif1olem1 26484 efif1olem2 26485 efif1olem4 26487 efif1o 26488 efifo 26489 ang180lem1 26752 ang180lem2 26753 log2ublem1 26889 log2ublem2 26890 bpos1lem 27226 bposlem7 27234 bposlem8 27235 bposlem9 27236 chebbnd1lem3 27415 chebbnd1 27416 chto1ub 27420 siilem1 30830 normlem6 31094 normlem7 31095 norm-ii-i 31116 bcsiALT 31158 nmopadjlem 32068 nmopcoi 32074 bdopcoi 32077 nmopcoadji 32080 unierri 32083 dpmul4 32884 hgt750lem 34635 hgt750lem2 34636 hgt750leme 34642 problem5 35649 circum 35654 iexpire 35715 taupi 37304 sin2h 37597 tan2h 37599 sumnnodd 45621 sinaover2ne0 45859 stirlinglem11 46075 dirkerper 46087 dirkercncflem2 46095 dirkercncflem4 46097 fourierdlem24 46122 fourierdlem43 46141 fourierdlem44 46142 fourierdlem68 46165 fourierdlem94 46191 fourierdlem111 46208 fourierdlem113 46210 sqwvfoura 46219 sqwvfourb 46220 fourierswlem 46221 fouriersw 46222 lighneallem4a 47602 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |