![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version |
Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
Ref | Expression |
---|---|
recni.1 | ⊢ 𝐴 ∈ ℝ |
axri.2 | ⊢ 𝐵 ∈ ℝ |
Ref | Expression |
---|---|
remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
3 | remulcl 11269 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 · cmul 11189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11247 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: ledivp1i 12220 ltdivp1i 12221 addltmul 12529 nn0lele2xi 12608 10re 12777 numltc 12784 nn0opthlem2 14318 faclbnd4lem1 14342 ef01bndlem 16232 cos2bnd 16236 sin4lt0 16243 dvdslelem 16357 divalglem1 16442 divalglem6 16446 sincosq3sgn 26560 sincosq4sgn 26561 sincos4thpi 26573 cos02pilt1 26586 cosq34lt1 26587 cos0pilt1 26592 efif1olem1 26602 efif1olem2 26603 efif1olem4 26605 efif1o 26606 efifo 26607 ang180lem1 26870 ang180lem2 26871 log2ublem1 27007 log2ublem2 27008 bpos1lem 27344 bposlem7 27352 bposlem8 27353 bposlem9 27354 chebbnd1lem3 27533 chebbnd1 27534 chto1ub 27538 siilem1 30883 normlem6 31147 normlem7 31148 norm-ii-i 31169 bcsiALT 31211 nmopadjlem 32121 nmopcoi 32127 bdopcoi 32130 nmopcoadji 32133 unierri 32136 dpmul4 32878 hgt750lem 34628 hgt750lem2 34629 hgt750leme 34635 problem5 35637 circum 35642 iexpire 35697 taupi 37289 sin2h 37570 tan2h 37572 sumnnodd 45551 sinaover2ne0 45789 stirlinglem11 46005 dirkerper 46017 dirkercncflem2 46025 dirkercncflem4 46027 fourierdlem24 46052 fourierdlem43 46071 fourierdlem44 46072 fourierdlem68 46095 fourierdlem94 46121 fourierdlem111 46138 fourierdlem113 46140 sqwvfoura 46149 sqwvfourb 46150 fourierswlem 46151 fouriersw 46152 lighneallem4a 47482 tgoldbach 47691 |
Copyright terms: Public domain | W3C validator |