| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | remulcl 11241 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 (class class class)co 7432 ℝcr 11155 · cmul 11161 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11219 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ledivp1i 12194 ltdivp1i 12195 addltmul 12504 nn0lele2xi 12584 10re 12754 numltc 12761 nn0opthlem2 14309 faclbnd4lem1 14333 ef01bndlem 16221 cos2bnd 16225 sin4lt0 16232 dvdslelem 16347 divalglem1 16432 divalglem6 16436 sincosq3sgn 26543 sincosq4sgn 26544 sincos4thpi 26556 cos02pilt1 26569 cosq34lt1 26570 cos0pilt1 26575 efif1olem1 26585 efif1olem2 26586 efif1olem4 26588 efif1o 26589 efifo 26590 ang180lem1 26853 ang180lem2 26854 log2ublem1 26990 log2ublem2 26991 bpos1lem 27327 bposlem7 27335 bposlem8 27336 bposlem9 27337 chebbnd1lem3 27516 chebbnd1 27517 chto1ub 27521 siilem1 30871 normlem6 31135 normlem7 31136 norm-ii-i 31157 bcsiALT 31199 nmopadjlem 32109 nmopcoi 32115 bdopcoi 32118 nmopcoadji 32121 unierri 32124 dpmul4 32897 hgt750lem 34667 hgt750lem2 34668 hgt750leme 34674 problem5 35675 circum 35680 iexpire 35736 taupi 37325 sin2h 37618 tan2h 37620 sumnnodd 45650 sinaover2ne0 45888 stirlinglem11 46104 dirkerper 46116 dirkercncflem2 46124 dirkercncflem4 46126 fourierdlem24 46151 fourierdlem43 46170 fourierdlem44 46171 fourierdlem68 46194 fourierdlem94 46220 fourierdlem111 46237 fourierdlem113 46239 sqwvfoura 46248 sqwvfourb 46249 fourierswlem 46250 fouriersw 46251 lighneallem4a 47600 tgoldbach 47809 |
| Copyright terms: Public domain | W3C validator |