| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > remulcli | Structured version Visualization version GIF version | ||
| Description: Closure law for multiplication of reals. (Contributed by NM, 17-Jan-1997.) |
| Ref | Expression |
|---|---|
| recni.1 | ⊢ 𝐴 ∈ ℝ |
| axri.2 | ⊢ 𝐵 ∈ ℝ |
| Ref | Expression |
|---|---|
| remulcli | ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recni.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
| 2 | axri.2 | . 2 ⊢ 𝐵 ∈ ℝ | |
| 3 | remulcl 11094 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 · 𝐵) ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℝcr 11008 · cmul 11014 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-mulrcl 11072 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: ledivp1i 12050 ltdivp1i 12051 addltmul 12360 nn0lele2xi 12440 10re 12610 numltc 12617 nn0opthlem2 14176 faclbnd4lem1 14200 ef01bndlem 16093 cos2bnd 16097 sin4lt0 16104 dvdslelem 16220 divalglem1 16305 divalglem6 16309 sincosq3sgn 26407 sincosq4sgn 26408 sincos4thpi 26420 cos02pilt1 26433 cosq34lt1 26434 cos0pilt1 26439 efif1olem1 26449 efif1olem2 26450 efif1olem4 26452 efif1o 26453 efifo 26454 ang180lem1 26717 ang180lem2 26718 log2ublem1 26854 log2ublem2 26855 bpos1lem 27191 bposlem7 27199 bposlem8 27200 bposlem9 27201 chebbnd1lem3 27380 chebbnd1 27381 chto1ub 27385 siilem1 30795 normlem6 31059 normlem7 31060 norm-ii-i 31081 bcsiALT 31123 nmopadjlem 32033 nmopcoi 32039 bdopcoi 32042 nmopcoadji 32045 unierri 32048 dpmul4 32855 hgt750lem 34625 hgt750lem2 34626 hgt750leme 34632 problem5 35652 circum 35657 iexpire 35718 taupi 37307 sin2h 37600 tan2h 37602 sumnnodd 45621 sinaover2ne0 45859 stirlinglem11 46075 dirkerper 46087 dirkercncflem2 46095 dirkercncflem4 46097 fourierdlem24 46122 fourierdlem43 46141 fourierdlem44 46142 fourierdlem68 46165 fourierdlem94 46191 fourierdlem111 46208 fourierdlem113 46210 sqwvfoura 46219 sqwvfourb 46220 fourierswlem 46221 fouriersw 46222 lighneallem4a 47602 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |