MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1i Structured version   Visualization version   GIF version

Theorem ledivp1i 11565
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ledivp1i ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵)

Proof of Theorem ledivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4 𝐴 ∈ ℝ
2 ltmul1.3 . . . . 5 𝐶 ∈ ℝ
3 1re 10641 . . . . . 6 1 ∈ ℝ
42, 3readdcli 10656 . . . . 5 (𝐶 + 1) ∈ ℝ
52ltp1i 11544 . . . . . . 7 𝐶 < (𝐶 + 1)
62, 4, 5ltleii 10763 . . . . . 6 𝐶 ≤ (𝐶 + 1)
7 lemul2a 11495 . . . . . 6 (((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶 ≤ (𝐶 + 1)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
86, 7mpan2 689 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
92, 4, 8mp3an12 1447 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
101, 9mpan 688 . . 3 (0 ≤ 𝐴 → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
11103ad2ant1 1129 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
12 0re 10643 . . . . . . . 8 0 ∈ ℝ
1312, 2, 4lelttri 10767 . . . . . . 7 ((0 ≤ 𝐶𝐶 < (𝐶 + 1)) → 0 < (𝐶 + 1))
145, 13mpan2 689 . . . . . 6 (0 ≤ 𝐶 → 0 < (𝐶 + 1))
154gt0ne0i 11175 . . . . . . . . 9 (0 < (𝐶 + 1) → (𝐶 + 1) ≠ 0)
16 prodgt0.2 . . . . . . . . . 10 𝐵 ∈ ℝ
1716, 4redivclzi 11406 . . . . . . . . 9 ((𝐶 + 1) ≠ 0 → (𝐵 / (𝐶 + 1)) ∈ ℝ)
1815, 17syl 17 . . . . . . . 8 (0 < (𝐶 + 1) → (𝐵 / (𝐶 + 1)) ∈ ℝ)
19 lemul1 11492 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
201, 19mp3an1 1444 . . . . . . . . . 10 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2120ex 415 . . . . . . . . 9 ((𝐵 / (𝐶 + 1)) ∈ ℝ → (((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1)) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))))
224, 21mpani 694 . . . . . . . 8 ((𝐵 / (𝐶 + 1)) ∈ ℝ → (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))))
2318, 22mpcom 38 . . . . . . 7 (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2423biimpd 231 . . . . . 6 (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2514, 24syl 17 . . . . 5 (0 ≤ 𝐶 → (𝐴 ≤ (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2625imp 409 . . . 4 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))
2716recni 10655 . . . . . . 7 𝐵 ∈ ℂ
284recni 10655 . . . . . . 7 (𝐶 + 1) ∈ ℂ
2927, 28divcan1zi 11376 . . . . . 6 ((𝐶 + 1) ≠ 0 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3014, 15, 293syl 18 . . . . 5 (0 ≤ 𝐶 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3130adantr 483 . . . 4 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3226, 31breqtrd 5092 . . 3 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ 𝐵)
33323adant1 1126 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ 𝐵)
341, 2remulcli 10657 . . 3 (𝐴 · 𝐶) ∈ ℝ
351, 4remulcli 10657 . . 3 (𝐴 · (𝐶 + 1)) ∈ ℝ
3634, 35, 16letri 10769 . 2 (((𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)) ∧ (𝐴 · (𝐶 + 1)) ≤ 𝐵) → (𝐴 · 𝐶) ≤ 𝐵)
3711, 33, 36syl2anc 586 1 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016   class class class wbr 5066  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538   + caddc 10540   · cmul 10542   < clt 10675  cle 10676   / cdiv 11297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-po 5474  df-so 5475  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator