MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivp1i Structured version   Visualization version   GIF version

Theorem ledivp1i 12220
Description: "Less than or equal to" and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 17-Sep-2005.)
Hypotheses
Ref Expression
ltplus1.1 𝐴 ∈ ℝ
prodgt0.2 𝐵 ∈ ℝ
ltmul1.3 𝐶 ∈ ℝ
Assertion
Ref Expression
ledivp1i ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵)

Proof of Theorem ledivp1i
StepHypRef Expression
1 ltplus1.1 . . . 4 𝐴 ∈ ℝ
2 ltmul1.3 . . . . 5 𝐶 ∈ ℝ
3 1re 11290 . . . . . 6 1 ∈ ℝ
42, 3readdcli 11305 . . . . 5 (𝐶 + 1) ∈ ℝ
52ltp1i 12199 . . . . . . 7 𝐶 < (𝐶 + 1)
62, 4, 5ltleii 11413 . . . . . 6 𝐶 ≤ (𝐶 + 1)
7 lemul2a 12149 . . . . . 6 (((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) ∧ 𝐶 ≤ (𝐶 + 1)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
86, 7mpan2 690 . . . . 5 ((𝐶 ∈ ℝ ∧ (𝐶 + 1) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴)) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
92, 4, 8mp3an12 1451 . . . 4 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
101, 9mpan 689 . . 3 (0 ≤ 𝐴 → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
11103ad2ant1 1133 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)))
12 0re 11292 . . . . . . . 8 0 ∈ ℝ
1312, 2, 4lelttri 11417 . . . . . . 7 ((0 ≤ 𝐶𝐶 < (𝐶 + 1)) → 0 < (𝐶 + 1))
145, 13mpan2 690 . . . . . 6 (0 ≤ 𝐶 → 0 < (𝐶 + 1))
154gt0ne0i 11825 . . . . . . . . 9 (0 < (𝐶 + 1) → (𝐶 + 1) ≠ 0)
16 prodgt0.2 . . . . . . . . . 10 𝐵 ∈ ℝ
1716, 4redivclzi 12060 . . . . . . . . 9 ((𝐶 + 1) ≠ 0 → (𝐵 / (𝐶 + 1)) ∈ ℝ)
1815, 17syl 17 . . . . . . . 8 (0 < (𝐶 + 1) → (𝐵 / (𝐶 + 1)) ∈ ℝ)
19 lemul1 12146 . . . . . . . . . . 11 ((𝐴 ∈ ℝ ∧ (𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
201, 19mp3an1 1448 . . . . . . . . . 10 (((𝐵 / (𝐶 + 1)) ∈ ℝ ∧ ((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1))) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2120ex 412 . . . . . . . . 9 ((𝐵 / (𝐶 + 1)) ∈ ℝ → (((𝐶 + 1) ∈ ℝ ∧ 0 < (𝐶 + 1)) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))))
224, 21mpani 695 . . . . . . . 8 ((𝐵 / (𝐶 + 1)) ∈ ℝ → (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))))
2318, 22mpcom 38 . . . . . . 7 (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) ↔ (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2423biimpd 229 . . . . . 6 (0 < (𝐶 + 1) → (𝐴 ≤ (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2514, 24syl 17 . . . . 5 (0 ≤ 𝐶 → (𝐴 ≤ (𝐵 / (𝐶 + 1)) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1))))
2625imp 406 . . . 4 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)))
2716recni 11304 . . . . . . 7 𝐵 ∈ ℂ
284recni 11304 . . . . . . 7 (𝐶 + 1) ∈ ℂ
2927, 28divcan1zi 12030 . . . . . 6 ((𝐶 + 1) ≠ 0 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3014, 15, 293syl 18 . . . . 5 (0 ≤ 𝐶 → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3130adantr 480 . . . 4 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → ((𝐵 / (𝐶 + 1)) · (𝐶 + 1)) = 𝐵)
3226, 31breqtrd 5192 . . 3 ((0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ 𝐵)
33323adant1 1130 . 2 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · (𝐶 + 1)) ≤ 𝐵)
341, 2remulcli 11306 . . 3 (𝐴 · 𝐶) ∈ ℝ
351, 4remulcli 11306 . . 3 (𝐴 · (𝐶 + 1)) ∈ ℝ
3634, 35, 16letri 11419 . 2 (((𝐴 · 𝐶) ≤ (𝐴 · (𝐶 + 1)) ∧ (𝐴 · (𝐶 + 1)) ≤ 𝐵) → (𝐴 · 𝐶) ≤ 𝐵)
3711, 33, 36syl2anc 583 1 ((0 ≤ 𝐴 ∧ 0 ≤ 𝐶𝐴 ≤ (𝐵 / (𝐶 + 1))) → (𝐴 · 𝐶) ≤ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325   / cdiv 11947
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator