MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem2 27415
Description: Lemma for dchrvmasum 27442. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.f ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
dchrvmasum.g (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
dchrvmasum.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasum.t (𝜑𝑇 ∈ ℂ)
dchrvmasum.1 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
dchrvmasum.r (𝜑𝑅 ∈ ℝ)
dchrvmasum.2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
Assertion
Ref Expression
dchrvmasumlem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚, 1   𝑚,𝑑,𝑥,𝐶   𝐹,𝑑,𝑥   𝑚,𝐾   𝑚,𝑁,𝑥   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥   𝑅,𝑑,𝑚,𝑥   𝑚,𝑍,𝑥   𝐷,𝑚,𝑥   𝐿,𝑑,𝑚,𝑥   𝑋,𝑑,𝑚,𝑥
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑑)   𝐾(𝑥,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem2
StepHypRef Expression
1 1red 11181 . 2 (𝜑 → 1 ∈ ℝ)
2 dchrvmasum.c . . . . . . 7 (𝜑𝐶 ∈ (0[,)+∞))
3 elrege0 13421 . . . . . . 7 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
42, 3sylib 218 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
54simpld 494 . . . . 5 (𝜑𝐶 ∈ ℝ)
65adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
7 fzfid 13944 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9 elfznn 13520 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
109nnrpd 12999 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
11 rpdivcl 12984 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
128, 10, 11syl2an 596 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
1312relogcld 26538 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℝ)
148adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
1513, 14rerpdivcld 13032 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
167, 15fsumrecl 15706 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
176, 16remulcld 11210 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
18 dchrvmasum.r . . . . 5 (𝜑𝑅 ∈ ℝ)
19 3nn 12266 . . . . . . 7 3 ∈ ℕ
20 nnrp 12969 . . . . . . 7 (3 ∈ ℕ → 3 ∈ ℝ+)
21 relogcl 26490 . . . . . . 7 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
2219, 20, 21mp2b 10 . . . . . 6 (log‘3) ∈ ℝ
23 1re 11180 . . . . . 6 1 ∈ ℝ
2422, 23readdcli 11195 . . . . 5 ((log‘3) + 1) ∈ ℝ
25 remulcl 11159 . . . . 5 ((𝑅 ∈ ℝ ∧ ((log‘3) + 1) ∈ ℝ) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2618, 24, 25sylancl 586 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2726adantr 480 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
28 rpssre 12965 . . . . 5 + ⊆ ℝ
295recnd 11208 . . . . 5 (𝜑𝐶 ∈ ℂ)
30 o1const 15592 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
3128, 29, 30sylancr 587 . . . 4 (𝜑 → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
32 logfacrlim2 27143 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1
33 rlimo1 15589 . . . . 5 ((𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
3432, 33mp1i 13 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
356, 16, 31, 34o1mul2 15597 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥))) ∈ 𝑂(1))
3626recnd 11208 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℂ)
37 o1const 15592 . . . 4 ((ℝ+ ⊆ ℝ ∧ (𝑅 · ((log‘3) + 1)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3828, 36, 37sylancr 587 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3917, 27, 35, 38o1add2 15596 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ 𝑂(1))
4017, 27readdcld 11209 . 2 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℝ)
41 dchrvmasum.g . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
4241eleq1d 2814 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → (𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ))
43 dchrvmasum.f . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
4443ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4544ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4642, 45, 12rspcdva 3592 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐾 ∈ ℂ)
47 dchrvmasum.t . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
4847ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
4946, 48subcld 11539 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐾𝑇) ∈ ℂ)
5049abscld 15411 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℝ)
519adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
5250, 51nndivred 12241 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
537, 52fsumrecl 15706 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
5453recnd 11208 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℂ)
5551nnrpd 12999 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
5649absge0d 15419 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝐾𝑇)))
5750, 55, 56divge0d 13041 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((abs‘(𝐾𝑇)) / 𝑑))
587, 52, 57fsumge0 15767 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
5953, 58absidd 15395 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
6059, 53eqeltrd 2829 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ ℝ)
6140recnd 11208 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℂ)
6261abscld 15411 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ ℝ)
63 3re 12267 . . . . . . . 8 3 ∈ ℝ
6463a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 3 ∈ ℝ)
65 1le3 12399 . . . . . . 7 1 ≤ 3
6664, 65jctir 520 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (3 ∈ ℝ ∧ 1 ≤ 3))
6718adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ ℝ)
6823rexri 11238 . . . . . . . . . 10 1 ∈ ℝ*
6963rexri 11238 . . . . . . . . . 10 3 ∈ ℝ*
70 1lt3 12360 . . . . . . . . . 10 1 < 3
71 lbico1 13367 . . . . . . . . . 10 ((1 ∈ ℝ* ∧ 3 ∈ ℝ* ∧ 1 < 3) → 1 ∈ (1[,)3))
7268, 69, 70, 71mp3an 1463 . . . . . . . . 9 1 ∈ (1[,)3)
73 0red 11183 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ∈ ℝ)
74 elico2 13377 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3)))
7523, 69, 74mp2an 692 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3))
7675simp1bi 1145 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ)
77 0red 11183 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 ∈ ℝ)
78 1red 11181 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ∈ ℝ)
79 0lt1 11706 . . . . . . . . . . . . . . 15 0 < 1
8079a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 < 1)
8175simp2bi 1146 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ≤ 𝑚)
8277, 78, 76, 80, 81ltletrd 11340 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 0 < 𝑚)
8376, 82elrpd 12998 . . . . . . . . . . . 12 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ+)
8447adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → 𝑇 ∈ ℂ)
8543, 84subcld 11539 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (𝐹𝑇) ∈ ℂ)
8685abscld 15411 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → (abs‘(𝐹𝑇)) ∈ ℝ)
8783, 86sylan2 593 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ∈ ℝ)
8818adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 𝑅 ∈ ℝ)
8985absge0d 15419 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → 0 ≤ (abs‘(𝐹𝑇)))
9083, 89sylan2 593 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ (abs‘(𝐹𝑇)))
91 dchrvmasum.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
9291r19.21bi 3230 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ≤ 𝑅)
9373, 87, 88, 90, 92letrd 11337 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ 𝑅)
9493ralrimiva 3126 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (1[,)3)0 ≤ 𝑅)
95 biidd 262 . . . . . . . . . 10 (𝑚 = 1 → (0 ≤ 𝑅 ↔ 0 ≤ 𝑅))
9695rspcv 3587 . . . . . . . . 9 (1 ∈ (1[,)3) → (∀𝑚 ∈ (1[,)3)0 ≤ 𝑅 → 0 ≤ 𝑅))
9772, 94, 96mpsyl 68 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
9897adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑅)
9967, 98jca 511 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
10050recnd 11208 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℂ)
1015ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
102101, 15remulcld 11210 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
1034ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
104 log1 26500 . . . . . . . . 9 (log‘1) = 0
10551nncnd 12203 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
106105mullidd 11198 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
107 rpre 12966 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
108107adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
109 fznnfl 13830 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
110108, 109syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
111110simplbda 499 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
112106, 111eqbrtrd 5131 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
113 1red 11181 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
114107ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
115113, 114, 55lemuldivd 13050 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
116112, 115mpbid 232 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
117 1rp 12961 . . . . . . . . . . . 12 1 ∈ ℝ+
118117a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
119118, 12logled 26542 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 ≤ (𝑥 / 𝑑) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑑))))
120116, 119mpbid 232 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘1) ≤ (log‘(𝑥 / 𝑑)))
121104, 120eqbrtrrid 5145 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘(𝑥 / 𝑑)))
122 rpregt0 12972 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
123122ad2antlr 727 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
124 divge0 12058 . . . . . . . 8 ((((log‘(𝑥 / 𝑑)) ∈ ℝ ∧ 0 ≤ (log‘(𝑥 / 𝑑))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
12513, 121, 123, 124syl21anc 837 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
126 mulge0 11702 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ ∧ 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
127103, 15, 125, 126syl12anc 836 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
128 absidm 15296 . . . . . . . . 9 ((𝐾𝑇) ∈ ℂ → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
12949, 128syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
130129adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
13141fvoveq1d 7411 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (abs‘(𝐹𝑇)) = (abs‘(𝐾𝑇)))
132 fveq2 6860 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → (log‘𝑚) = (log‘(𝑥 / 𝑑)))
133 id 22 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → 𝑚 = (𝑥 / 𝑑))
134132, 133oveq12d 7407 . . . . . . . . . . 11 (𝑚 = (𝑥 / 𝑑) → ((log‘𝑚) / 𝑚) = ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))
135134oveq2d 7405 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (𝐶 · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
136131, 135breq12d 5122 . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)) ↔ (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))))
137 dchrvmasum.1 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
138137ralrimiva 3126 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
139138ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
140 nndivre 12228 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
141108, 9, 140syl2an 596 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
142141adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ ℝ)
143 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → 3 ≤ (𝑥 / 𝑑))
144 elicopnf 13412 . . . . . . . . . . 11 (3 ∈ ℝ → ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑))))
14563, 144ax-mp 5 . . . . . . . . . 10 ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑)))
146142, 143, 145sylanbrc 583 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ (3[,)+∞))
147136, 139, 146rspcdva 3592 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
14813recnd 11208 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℂ)
149 rpcnne0 12976 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
150149ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
15155rpcnne0d 13010 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
152 divdiv2 11900 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
153148, 150, 151, 152syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
154 div23 11862 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
155148, 105, 150, 154syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
156153, 155eqtrd 2765 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
157156oveq2d 7405 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
15829ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
15915recnd 11208 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℂ)
160158, 159, 105mulassd 11203 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
161157, 160eqtr4d 2768 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
162161adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
163147, 162breqtrd 5135 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
164130, 163eqbrtrd 5131 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
165129adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
166131breq1d 5119 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ 𝑅 ↔ (abs‘(𝐾𝑇)) ≤ 𝑅))
16791ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
168141adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ ℝ)
169116adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → 1 ≤ (𝑥 / 𝑑))
170 simpr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) < 3)
171 elico2 13377 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3)))
17223, 69, 171mp2an 692 . . . . . . . . 9 ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3))
173168, 169, 170, 172syl3anbrc 1344 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ (1[,)3))
174166, 167, 173rspcdva 3592 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(𝐾𝑇)) ≤ 𝑅)
175165, 174eqbrtrd 5131 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) ≤ 𝑅)
1768, 66, 99, 100, 102, 127, 164, 175fsumharmonic 26928 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
17729adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
1787, 177, 159fsummulc2 15756 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
179178oveq1d 7404 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
180176, 179breqtrrd 5137 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
18140leabsd 15387 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
18260, 40, 62, 180, 181letrd 11337 . . 3 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
183182adantrr 717 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
1841, 39, 40, 54, 183o1le 15625 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wss 3916   class class class wbr 5109  cmpt 5190  cfv 6513  (class class class)co 7389  cc 11072  cr 11073  0cc0 11074  1c1 11075   + caddc 11077   · cmul 11079  +∞cpnf 11211  *cxr 11213   < clt 11214  cle 11215  cmin 11411   / cdiv 11841  cn 12187  3c3 12243  +crp 12957  [,)cico 13314  ...cfz 13474  cfl 13758  abscabs 15206  𝑟 crli 15457  𝑂(1)co1 15458  Σcsu 15658  Basecbs 17185  0gc0g 17408  ℤRHomczrh 21415  ℤ/nczn 21418  logclog 26469  DChrcdchr 27149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-inf2 9600  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151  ax-pre-sup 11152  ax-addf 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-iin 4960  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-of 7655  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-2o 8437  df-oadd 8440  df-er 8673  df-map 8803  df-pm 8804  df-ixp 8873  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-fi 9368  df-sup 9399  df-inf 9400  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-div 11842  df-nn 12188  df-2 12250  df-3 12251  df-4 12252  df-5 12253  df-6 12254  df-7 12255  df-8 12256  df-9 12257  df-n0 12449  df-xnn0 12522  df-z 12536  df-dec 12656  df-uz 12800  df-q 12914  df-rp 12958  df-xneg 13078  df-xadd 13079  df-xmul 13080  df-ioo 13316  df-ioc 13317  df-ico 13318  df-icc 13319  df-fz 13475  df-fzo 13622  df-fl 13760  df-mod 13838  df-seq 13973  df-exp 14033  df-fac 14245  df-bc 14274  df-hash 14302  df-shft 15039  df-cj 15071  df-re 15072  df-im 15073  df-sqrt 15207  df-abs 15208  df-limsup 15443  df-clim 15460  df-rlim 15461  df-o1 15462  df-lo1 15463  df-sum 15659  df-ef 16039  df-e 16040  df-sin 16041  df-cos 16042  df-tan 16043  df-pi 16044  df-dvds 16229  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-mulr 17240  df-starv 17241  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-unif 17249  df-hom 17250  df-cco 17251  df-rest 17391  df-topn 17392  df-0g 17410  df-gsum 17411  df-topgen 17412  df-pt 17413  df-prds 17416  df-xrs 17471  df-qtop 17476  df-imas 17477  df-xps 17479  df-mre 17553  df-mrc 17554  df-acs 17556  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-mulg 19006  df-cntz 19255  df-cmn 19718  df-psmet 21262  df-xmet 21263  df-met 21264  df-bl 21265  df-mopn 21266  df-fbas 21267  df-fg 21268  df-cnfld 21271  df-top 22787  df-topon 22804  df-topsp 22826  df-bases 22839  df-cld 22912  df-ntr 22913  df-cls 22914  df-nei 22991  df-lp 23029  df-perf 23030  df-cn 23120  df-cnp 23121  df-haus 23208  df-cmp 23280  df-tx 23455  df-hmeo 23648  df-fil 23739  df-fm 23831  df-flim 23832  df-flf 23833  df-xms 24214  df-ms 24215  df-tms 24216  df-cncf 24777  df-limc 25773  df-dv 25774  df-ulm 26292  df-log 26471  df-cxp 26472  df-atan 26783  df-em 26909
This theorem is referenced by:  dchrvmasumlem3  27416
  Copyright terms: Public domain W3C validator