MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem2 26082
Description: Lemma for dchrvmasum 26109. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.f ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
dchrvmasum.g (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
dchrvmasum.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasum.t (𝜑𝑇 ∈ ℂ)
dchrvmasum.1 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
dchrvmasum.r (𝜑𝑅 ∈ ℝ)
dchrvmasum.2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
Assertion
Ref Expression
dchrvmasumlem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚, 1   𝑚,𝑑,𝑥,𝐶   𝐹,𝑑,𝑥   𝑚,𝐾   𝑚,𝑁,𝑥   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥   𝑅,𝑑,𝑚,𝑥   𝑚,𝑍,𝑥   𝐷,𝑚,𝑥   𝐿,𝑑,𝑚,𝑥   𝑋,𝑑,𝑚,𝑥
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑑)   𝐾(𝑥,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem2
StepHypRef Expression
1 1red 10631 . 2 (𝜑 → 1 ∈ ℝ)
2 dchrvmasum.c . . . . . . 7 (𝜑𝐶 ∈ (0[,)+∞))
3 elrege0 12832 . . . . . . 7 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
42, 3sylib 221 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
54simpld 498 . . . . 5 (𝜑𝐶 ∈ ℝ)
65adantr 484 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
7 fzfid 13336 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 simpr 488 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9 elfznn 12931 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
109nnrpd 12417 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
11 rpdivcl 12402 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
128, 10, 11syl2an 598 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
1312relogcld 25214 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℝ)
148adantr 484 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
1513, 14rerpdivcld 12450 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
167, 15fsumrecl 15083 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
176, 16remulcld 10660 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
18 dchrvmasum.r . . . . 5 (𝜑𝑅 ∈ ℝ)
19 3nn 11704 . . . . . . 7 3 ∈ ℕ
20 nnrp 12388 . . . . . . 7 (3 ∈ ℕ → 3 ∈ ℝ+)
21 relogcl 25167 . . . . . . 7 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
2219, 20, 21mp2b 10 . . . . . 6 (log‘3) ∈ ℝ
23 1re 10630 . . . . . 6 1 ∈ ℝ
2422, 23readdcli 10645 . . . . 5 ((log‘3) + 1) ∈ ℝ
25 remulcl 10611 . . . . 5 ((𝑅 ∈ ℝ ∧ ((log‘3) + 1) ∈ ℝ) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2618, 24, 25sylancl 589 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2726adantr 484 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
28 rpssre 12384 . . . . 5 + ⊆ ℝ
295recnd 10658 . . . . 5 (𝜑𝐶 ∈ ℂ)
30 o1const 14968 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
3128, 29, 30sylancr 590 . . . 4 (𝜑 → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
32 logfacrlim2 25810 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1
33 rlimo1 14965 . . . . 5 ((𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
3432, 33mp1i 13 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
356, 16, 31, 34o1mul2 14973 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥))) ∈ 𝑂(1))
3626recnd 10658 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℂ)
37 o1const 14968 . . . 4 ((ℝ+ ⊆ ℝ ∧ (𝑅 · ((log‘3) + 1)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3828, 36, 37sylancr 590 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3917, 27, 35, 38o1add2 14972 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ 𝑂(1))
4017, 27readdcld 10659 . 2 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℝ)
41 dchrvmasum.g . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
4241eleq1d 2874 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → (𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ))
43 dchrvmasum.f . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
4443ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4544ad2antrr 725 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4642, 45, 12rspcdva 3573 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐾 ∈ ℂ)
47 dchrvmasum.t . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
4847ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
4946, 48subcld 10986 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐾𝑇) ∈ ℂ)
5049abscld 14788 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℝ)
519adantl 485 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
5250, 51nndivred 11679 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
537, 52fsumrecl 15083 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
5453recnd 10658 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℂ)
5551nnrpd 12417 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
5649absge0d 14796 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝐾𝑇)))
5750, 55, 56divge0d 12459 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((abs‘(𝐾𝑇)) / 𝑑))
587, 52, 57fsumge0 15142 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
5953, 58absidd 14774 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
6059, 53eqeltrd 2890 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ ℝ)
6140recnd 10658 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℂ)
6261abscld 14788 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ ℝ)
63 3re 11705 . . . . . . . 8 3 ∈ ℝ
6463a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 3 ∈ ℝ)
65 1le3 11837 . . . . . . 7 1 ≤ 3
6664, 65jctir 524 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (3 ∈ ℝ ∧ 1 ≤ 3))
6718adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ ℝ)
6823rexri 10688 . . . . . . . . . 10 1 ∈ ℝ*
6963rexri 10688 . . . . . . . . . 10 3 ∈ ℝ*
70 1lt3 11798 . . . . . . . . . 10 1 < 3
71 lbico1 12779 . . . . . . . . . 10 ((1 ∈ ℝ* ∧ 3 ∈ ℝ* ∧ 1 < 3) → 1 ∈ (1[,)3))
7268, 69, 70, 71mp3an 1458 . . . . . . . . 9 1 ∈ (1[,)3)
73 0red 10633 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ∈ ℝ)
74 elico2 12789 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3)))
7523, 69, 74mp2an 691 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3))
7675simp1bi 1142 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ)
77 0red 10633 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 ∈ ℝ)
78 1red 10631 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ∈ ℝ)
79 0lt1 11151 . . . . . . . . . . . . . . 15 0 < 1
8079a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 < 1)
8175simp2bi 1143 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ≤ 𝑚)
8277, 78, 76, 80, 81ltletrd 10789 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 0 < 𝑚)
8376, 82elrpd 12416 . . . . . . . . . . . 12 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ+)
8447adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → 𝑇 ∈ ℂ)
8543, 84subcld 10986 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (𝐹𝑇) ∈ ℂ)
8685abscld 14788 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → (abs‘(𝐹𝑇)) ∈ ℝ)
8783, 86sylan2 595 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ∈ ℝ)
8818adantr 484 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 𝑅 ∈ ℝ)
8985absge0d 14796 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → 0 ≤ (abs‘(𝐹𝑇)))
9083, 89sylan2 595 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ (abs‘(𝐹𝑇)))
91 dchrvmasum.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
9291r19.21bi 3173 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ≤ 𝑅)
9373, 87, 88, 90, 92letrd 10786 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ 𝑅)
9493ralrimiva 3149 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (1[,)3)0 ≤ 𝑅)
95 biidd 265 . . . . . . . . . 10 (𝑚 = 1 → (0 ≤ 𝑅 ↔ 0 ≤ 𝑅))
9695rspcv 3566 . . . . . . . . 9 (1 ∈ (1[,)3) → (∀𝑚 ∈ (1[,)3)0 ≤ 𝑅 → 0 ≤ 𝑅))
9772, 94, 96mpsyl 68 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
9897adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑅)
9967, 98jca 515 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
10050recnd 10658 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℂ)
1015ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
102101, 15remulcld 10660 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
1034ad2antrr 725 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
104 log1 25177 . . . . . . . . 9 (log‘1) = 0
10551nncnd 11641 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
106105mulid2d 10648 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
107 rpre 12385 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
108107adantl 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
109 fznnfl 13225 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
110108, 109syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
111110simplbda 503 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
112106, 111eqbrtrd 5052 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
113 1red 10631 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
114107ad2antlr 726 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
115113, 114, 55lemuldivd 12468 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
116112, 115mpbid 235 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
117 1rp 12381 . . . . . . . . . . . 12 1 ∈ ℝ+
118117a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
119118, 12logled 25218 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 ≤ (𝑥 / 𝑑) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑑))))
120116, 119mpbid 235 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘1) ≤ (log‘(𝑥 / 𝑑)))
121104, 120eqbrtrrid 5066 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘(𝑥 / 𝑑)))
122 rpregt0 12391 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
123122ad2antlr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
124 divge0 11498 . . . . . . . 8 ((((log‘(𝑥 / 𝑑)) ∈ ℝ ∧ 0 ≤ (log‘(𝑥 / 𝑑))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
12513, 121, 123, 124syl21anc 836 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
126 mulge0 11147 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ ∧ 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
127103, 15, 125, 126syl12anc 835 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
128 absidm 14675 . . . . . . . . 9 ((𝐾𝑇) ∈ ℂ → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
12949, 128syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
130129adantr 484 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
13141fvoveq1d 7157 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (abs‘(𝐹𝑇)) = (abs‘(𝐾𝑇)))
132 fveq2 6645 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → (log‘𝑚) = (log‘(𝑥 / 𝑑)))
133 id 22 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → 𝑚 = (𝑥 / 𝑑))
134132, 133oveq12d 7153 . . . . . . . . . . 11 (𝑚 = (𝑥 / 𝑑) → ((log‘𝑚) / 𝑚) = ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))
135134oveq2d 7151 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (𝐶 · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
136131, 135breq12d 5043 . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)) ↔ (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))))
137 dchrvmasum.1 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
138137ralrimiva 3149 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
139138ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
140 nndivre 11666 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
141108, 9, 140syl2an 598 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
142141adantr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ ℝ)
143 simpr 488 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → 3 ≤ (𝑥 / 𝑑))
144 elicopnf 12823 . . . . . . . . . . 11 (3 ∈ ℝ → ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑))))
14563, 144ax-mp 5 . . . . . . . . . 10 ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑)))
146142, 143, 145sylanbrc 586 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ (3[,)+∞))
147136, 139, 146rspcdva 3573 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
14813recnd 10658 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℂ)
149 rpcnne0 12395 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
150149ad2antlr 726 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
15155rpcnne0d 12428 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
152 divdiv2 11341 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
153148, 150, 151, 152syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
154 div23 11306 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
155148, 105, 150, 154syl3anc 1368 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
156153, 155eqtrd 2833 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
157156oveq2d 7151 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
15829ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
15915recnd 10658 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℂ)
160158, 159, 105mulassd 10653 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
161157, 160eqtr4d 2836 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
162161adantr 484 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
163147, 162breqtrd 5056 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
164130, 163eqbrtrd 5052 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
165129adantr 484 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
166131breq1d 5040 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ 𝑅 ↔ (abs‘(𝐾𝑇)) ≤ 𝑅))
16791ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
168141adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ ℝ)
169116adantr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → 1 ≤ (𝑥 / 𝑑))
170 simpr 488 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) < 3)
171 elico2 12789 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3)))
17223, 69, 171mp2an 691 . . . . . . . . 9 ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3))
173168, 169, 170, 172syl3anbrc 1340 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ (1[,)3))
174166, 167, 173rspcdva 3573 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(𝐾𝑇)) ≤ 𝑅)
175165, 174eqbrtrd 5052 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) ≤ 𝑅)
1768, 66, 99, 100, 102, 127, 164, 175fsumharmonic 25597 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
17729adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
1787, 177, 159fsummulc2 15131 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
179178oveq1d 7150 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
180176, 179breqtrrd 5058 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
18140leabsd 14766 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
18260, 40, 62, 180, 181letrd 10786 . . 3 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
183182adantrr 716 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
1841, 39, 40, 54, 183o1le 15001 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wss 3881   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  cmin 10859   / cdiv 11286  cn 11625  3c3 11681  +crp 12377  [,)cico 12728  ...cfz 12885  cfl 13155  abscabs 14585  𝑟 crli 14834  𝑂(1)co1 14835  Σcsu 15034  Basecbs 16475  0gc0g 16705  ℤRHomczrh 20193  ℤ/nczn 20196  logclog 25146  DChrcdchr 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-xnn0 11956  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-o1 14839  df-lo1 14840  df-sum 15035  df-ef 15413  df-e 15414  df-sin 15415  df-cos 15416  df-tan 15417  df-pi 15418  df-dvds 15600  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-ulm 24972  df-log 25148  df-cxp 25149  df-atan 25453  df-em 25578
This theorem is referenced by:  dchrvmasumlem3  26083
  Copyright terms: Public domain W3C validator