MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem2 26551
Description: Lemma for dchrvmasum 26578. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.f ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
dchrvmasum.g (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
dchrvmasum.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasum.t (𝜑𝑇 ∈ ℂ)
dchrvmasum.1 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
dchrvmasum.r (𝜑𝑅 ∈ ℝ)
dchrvmasum.2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
Assertion
Ref Expression
dchrvmasumlem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚, 1   𝑚,𝑑,𝑥,𝐶   𝐹,𝑑,𝑥   𝑚,𝐾   𝑚,𝑁,𝑥   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥   𝑅,𝑑,𝑚,𝑥   𝑚,𝑍,𝑥   𝐷,𝑚,𝑥   𝐿,𝑑,𝑚,𝑥   𝑋,𝑑,𝑚,𝑥
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑑)   𝐾(𝑥,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem2
StepHypRef Expression
1 1red 10907 . 2 (𝜑 → 1 ∈ ℝ)
2 dchrvmasum.c . . . . . . 7 (𝜑𝐶 ∈ (0[,)+∞))
3 elrege0 13115 . . . . . . 7 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
42, 3sylib 217 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
54simpld 494 . . . . 5 (𝜑𝐶 ∈ ℝ)
65adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
7 fzfid 13621 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9 elfznn 13214 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
109nnrpd 12699 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
11 rpdivcl 12684 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
128, 10, 11syl2an 595 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
1312relogcld 25683 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℝ)
148adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
1513, 14rerpdivcld 12732 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
167, 15fsumrecl 15374 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
176, 16remulcld 10936 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
18 dchrvmasum.r . . . . 5 (𝜑𝑅 ∈ ℝ)
19 3nn 11982 . . . . . . 7 3 ∈ ℕ
20 nnrp 12670 . . . . . . 7 (3 ∈ ℕ → 3 ∈ ℝ+)
21 relogcl 25636 . . . . . . 7 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
2219, 20, 21mp2b 10 . . . . . 6 (log‘3) ∈ ℝ
23 1re 10906 . . . . . 6 1 ∈ ℝ
2422, 23readdcli 10921 . . . . 5 ((log‘3) + 1) ∈ ℝ
25 remulcl 10887 . . . . 5 ((𝑅 ∈ ℝ ∧ ((log‘3) + 1) ∈ ℝ) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2618, 24, 25sylancl 585 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2726adantr 480 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
28 rpssre 12666 . . . . 5 + ⊆ ℝ
295recnd 10934 . . . . 5 (𝜑𝐶 ∈ ℂ)
30 o1const 15257 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
3128, 29, 30sylancr 586 . . . 4 (𝜑 → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
32 logfacrlim2 26279 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1
33 rlimo1 15254 . . . . 5 ((𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
3432, 33mp1i 13 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
356, 16, 31, 34o1mul2 15262 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥))) ∈ 𝑂(1))
3626recnd 10934 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℂ)
37 o1const 15257 . . . 4 ((ℝ+ ⊆ ℝ ∧ (𝑅 · ((log‘3) + 1)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3828, 36, 37sylancr 586 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3917, 27, 35, 38o1add2 15261 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ 𝑂(1))
4017, 27readdcld 10935 . 2 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℝ)
41 dchrvmasum.g . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
4241eleq1d 2823 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → (𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ))
43 dchrvmasum.f . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
4443ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4544ad2antrr 722 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4642, 45, 12rspcdva 3554 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐾 ∈ ℂ)
47 dchrvmasum.t . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
4847ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
4946, 48subcld 11262 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐾𝑇) ∈ ℂ)
5049abscld 15076 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℝ)
519adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
5250, 51nndivred 11957 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
537, 52fsumrecl 15374 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
5453recnd 10934 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℂ)
5551nnrpd 12699 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
5649absge0d 15084 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝐾𝑇)))
5750, 55, 56divge0d 12741 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((abs‘(𝐾𝑇)) / 𝑑))
587, 52, 57fsumge0 15435 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
5953, 58absidd 15062 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
6059, 53eqeltrd 2839 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ ℝ)
6140recnd 10934 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℂ)
6261abscld 15076 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ ℝ)
63 3re 11983 . . . . . . . 8 3 ∈ ℝ
6463a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 3 ∈ ℝ)
65 1le3 12115 . . . . . . 7 1 ≤ 3
6664, 65jctir 520 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (3 ∈ ℝ ∧ 1 ≤ 3))
6718adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ ℝ)
6823rexri 10964 . . . . . . . . . 10 1 ∈ ℝ*
6963rexri 10964 . . . . . . . . . 10 3 ∈ ℝ*
70 1lt3 12076 . . . . . . . . . 10 1 < 3
71 lbico1 13062 . . . . . . . . . 10 ((1 ∈ ℝ* ∧ 3 ∈ ℝ* ∧ 1 < 3) → 1 ∈ (1[,)3))
7268, 69, 70, 71mp3an 1459 . . . . . . . . 9 1 ∈ (1[,)3)
73 0red 10909 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ∈ ℝ)
74 elico2 13072 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3)))
7523, 69, 74mp2an 688 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3))
7675simp1bi 1143 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ)
77 0red 10909 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 ∈ ℝ)
78 1red 10907 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ∈ ℝ)
79 0lt1 11427 . . . . . . . . . . . . . . 15 0 < 1
8079a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 < 1)
8175simp2bi 1144 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ≤ 𝑚)
8277, 78, 76, 80, 81ltletrd 11065 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 0 < 𝑚)
8376, 82elrpd 12698 . . . . . . . . . . . 12 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ+)
8447adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → 𝑇 ∈ ℂ)
8543, 84subcld 11262 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (𝐹𝑇) ∈ ℂ)
8685abscld 15076 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → (abs‘(𝐹𝑇)) ∈ ℝ)
8783, 86sylan2 592 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ∈ ℝ)
8818adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 𝑅 ∈ ℝ)
8985absge0d 15084 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → 0 ≤ (abs‘(𝐹𝑇)))
9083, 89sylan2 592 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ (abs‘(𝐹𝑇)))
91 dchrvmasum.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
9291r19.21bi 3132 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ≤ 𝑅)
9373, 87, 88, 90, 92letrd 11062 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ 𝑅)
9493ralrimiva 3107 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (1[,)3)0 ≤ 𝑅)
95 biidd 261 . . . . . . . . . 10 (𝑚 = 1 → (0 ≤ 𝑅 ↔ 0 ≤ 𝑅))
9695rspcv 3547 . . . . . . . . 9 (1 ∈ (1[,)3) → (∀𝑚 ∈ (1[,)3)0 ≤ 𝑅 → 0 ≤ 𝑅))
9772, 94, 96mpsyl 68 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
9897adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑅)
9967, 98jca 511 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
10050recnd 10934 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℂ)
1015ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
102101, 15remulcld 10936 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
1034ad2antrr 722 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
104 log1 25646 . . . . . . . . 9 (log‘1) = 0
10551nncnd 11919 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
106105mulid2d 10924 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
107 rpre 12667 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
108107adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
109 fznnfl 13510 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
110108, 109syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
111110simplbda 499 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
112106, 111eqbrtrd 5092 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
113 1red 10907 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
114107ad2antlr 723 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
115113, 114, 55lemuldivd 12750 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
116112, 115mpbid 231 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
117 1rp 12663 . . . . . . . . . . . 12 1 ∈ ℝ+
118117a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
119118, 12logled 25687 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 ≤ (𝑥 / 𝑑) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑑))))
120116, 119mpbid 231 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘1) ≤ (log‘(𝑥 / 𝑑)))
121104, 120eqbrtrrid 5106 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘(𝑥 / 𝑑)))
122 rpregt0 12673 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
123122ad2antlr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
124 divge0 11774 . . . . . . . 8 ((((log‘(𝑥 / 𝑑)) ∈ ℝ ∧ 0 ≤ (log‘(𝑥 / 𝑑))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
12513, 121, 123, 124syl21anc 834 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
126 mulge0 11423 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ ∧ 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
127103, 15, 125, 126syl12anc 833 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
128 absidm 14963 . . . . . . . . 9 ((𝐾𝑇) ∈ ℂ → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
12949, 128syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
130129adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
13141fvoveq1d 7277 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (abs‘(𝐹𝑇)) = (abs‘(𝐾𝑇)))
132 fveq2 6756 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → (log‘𝑚) = (log‘(𝑥 / 𝑑)))
133 id 22 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → 𝑚 = (𝑥 / 𝑑))
134132, 133oveq12d 7273 . . . . . . . . . . 11 (𝑚 = (𝑥 / 𝑑) → ((log‘𝑚) / 𝑚) = ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))
135134oveq2d 7271 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (𝐶 · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
136131, 135breq12d 5083 . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)) ↔ (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))))
137 dchrvmasum.1 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
138137ralrimiva 3107 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
139138ad3antrrr 726 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
140 nndivre 11944 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
141108, 9, 140syl2an 595 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
142141adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ ℝ)
143 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → 3 ≤ (𝑥 / 𝑑))
144 elicopnf 13106 . . . . . . . . . . 11 (3 ∈ ℝ → ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑))))
14563, 144ax-mp 5 . . . . . . . . . 10 ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑)))
146142, 143, 145sylanbrc 582 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ (3[,)+∞))
147136, 139, 146rspcdva 3554 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
14813recnd 10934 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℂ)
149 rpcnne0 12677 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
150149ad2antlr 723 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
15155rpcnne0d 12710 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
152 divdiv2 11617 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
153148, 150, 151, 152syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
154 div23 11582 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
155148, 105, 150, 154syl3anc 1369 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
156153, 155eqtrd 2778 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
157156oveq2d 7271 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
15829ad2antrr 722 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
15915recnd 10934 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℂ)
160158, 159, 105mulassd 10929 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
161157, 160eqtr4d 2781 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
162161adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
163147, 162breqtrd 5096 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
164130, 163eqbrtrd 5092 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
165129adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
166131breq1d 5080 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ 𝑅 ↔ (abs‘(𝐾𝑇)) ≤ 𝑅))
16791ad3antrrr 726 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
168141adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ ℝ)
169116adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → 1 ≤ (𝑥 / 𝑑))
170 simpr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) < 3)
171 elico2 13072 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3)))
17223, 69, 171mp2an 688 . . . . . . . . 9 ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3))
173168, 169, 170, 172syl3anbrc 1341 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ (1[,)3))
174166, 167, 173rspcdva 3554 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(𝐾𝑇)) ≤ 𝑅)
175165, 174eqbrtrd 5092 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) ≤ 𝑅)
1768, 66, 99, 100, 102, 127, 164, 175fsumharmonic 26066 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
17729adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
1787, 177, 159fsummulc2 15424 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
179178oveq1d 7270 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
180176, 179breqtrrd 5098 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
18140leabsd 15054 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
18260, 40, 62, 180, 181letrd 11062 . . 3 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
183182adantrr 713 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
1841, 39, 40, 54, 183o1le 15292 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wss 3883   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  cn 11903  3c3 11959  +crp 12659  [,)cico 13010  ...cfz 13168  cfl 13438  abscabs 14873  𝑟 crli 15122  𝑂(1)co1 15123  Σcsu 15325  Basecbs 16840  0gc0g 17067  ℤRHomczrh 20613  ℤ/nczn 20616  logclog 25615  DChrcdchr 26285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-xnn0 12236  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-o1 15127  df-lo1 15128  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-tan 15709  df-pi 15710  df-dvds 15892  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-ulm 25441  df-log 25617  df-cxp 25618  df-atan 25922  df-em 26047
This theorem is referenced by:  dchrvmasumlem3  26552
  Copyright terms: Public domain W3C validator