MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem2 27344
Description: Lemma for dchrvmasum 27371. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.f ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
dchrvmasum.g (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
dchrvmasum.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasum.t (𝜑𝑇 ∈ ℂ)
dchrvmasum.1 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
dchrvmasum.r (𝜑𝑅 ∈ ℝ)
dchrvmasum.2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
Assertion
Ref Expression
dchrvmasumlem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚, 1   𝑚,𝑑,𝑥,𝐶   𝐹,𝑑,𝑥   𝑚,𝐾   𝑚,𝑁,𝑥   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥   𝑅,𝑑,𝑚,𝑥   𝑚,𝑍,𝑥   𝐷,𝑚,𝑥   𝐿,𝑑,𝑚,𝑥   𝑋,𝑑,𝑚,𝑥
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑑)   𝐾(𝑥,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem2
StepHypRef Expression
1 1red 11222 . 2 (𝜑 → 1 ∈ ℝ)
2 dchrvmasum.c . . . . . . 7 (𝜑𝐶 ∈ (0[,)+∞))
3 elrege0 13438 . . . . . . 7 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
42, 3sylib 217 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
54simpld 494 . . . . 5 (𝜑𝐶 ∈ ℝ)
65adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
7 fzfid 13945 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9 elfznn 13537 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
109nnrpd 13021 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
11 rpdivcl 13006 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
128, 10, 11syl2an 595 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
1312relogcld 26471 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℝ)
148adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
1513, 14rerpdivcld 13054 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
167, 15fsumrecl 15687 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
176, 16remulcld 11251 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
18 dchrvmasum.r . . . . 5 (𝜑𝑅 ∈ ℝ)
19 3nn 12298 . . . . . . 7 3 ∈ ℕ
20 nnrp 12992 . . . . . . 7 (3 ∈ ℕ → 3 ∈ ℝ+)
21 relogcl 26424 . . . . . . 7 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
2219, 20, 21mp2b 10 . . . . . 6 (log‘3) ∈ ℝ
23 1re 11221 . . . . . 6 1 ∈ ℝ
2422, 23readdcli 11236 . . . . 5 ((log‘3) + 1) ∈ ℝ
25 remulcl 11201 . . . . 5 ((𝑅 ∈ ℝ ∧ ((log‘3) + 1) ∈ ℝ) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2618, 24, 25sylancl 585 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2726adantr 480 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
28 rpssre 12988 . . . . 5 + ⊆ ℝ
295recnd 11249 . . . . 5 (𝜑𝐶 ∈ ℂ)
30 o1const 15571 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
3128, 29, 30sylancr 586 . . . 4 (𝜑 → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
32 logfacrlim2 27072 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1
33 rlimo1 15568 . . . . 5 ((𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
3432, 33mp1i 13 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
356, 16, 31, 34o1mul2 15576 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥))) ∈ 𝑂(1))
3626recnd 11249 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℂ)
37 o1const 15571 . . . 4 ((ℝ+ ⊆ ℝ ∧ (𝑅 · ((log‘3) + 1)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3828, 36, 37sylancr 586 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3917, 27, 35, 38o1add2 15575 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ 𝑂(1))
4017, 27readdcld 11250 . 2 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℝ)
41 dchrvmasum.g . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
4241eleq1d 2817 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → (𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ))
43 dchrvmasum.f . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
4443ralrimiva 3145 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4544ad2antrr 723 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4642, 45, 12rspcdva 3613 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐾 ∈ ℂ)
47 dchrvmasum.t . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
4847ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
4946, 48subcld 11578 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐾𝑇) ∈ ℂ)
5049abscld 15390 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℝ)
519adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
5250, 51nndivred 12273 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
537, 52fsumrecl 15687 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
5453recnd 11249 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℂ)
5551nnrpd 13021 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
5649absge0d 15398 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝐾𝑇)))
5750, 55, 56divge0d 13063 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((abs‘(𝐾𝑇)) / 𝑑))
587, 52, 57fsumge0 15748 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
5953, 58absidd 15376 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
6059, 53eqeltrd 2832 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ ℝ)
6140recnd 11249 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℂ)
6261abscld 15390 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ ℝ)
63 3re 12299 . . . . . . . 8 3 ∈ ℝ
6463a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 3 ∈ ℝ)
65 1le3 12431 . . . . . . 7 1 ≤ 3
6664, 65jctir 520 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (3 ∈ ℝ ∧ 1 ≤ 3))
6718adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ ℝ)
6823rexri 11279 . . . . . . . . . 10 1 ∈ ℝ*
6963rexri 11279 . . . . . . . . . 10 3 ∈ ℝ*
70 1lt3 12392 . . . . . . . . . 10 1 < 3
71 lbico1 13385 . . . . . . . . . 10 ((1 ∈ ℝ* ∧ 3 ∈ ℝ* ∧ 1 < 3) → 1 ∈ (1[,)3))
7268, 69, 70, 71mp3an 1460 . . . . . . . . 9 1 ∈ (1[,)3)
73 0red 11224 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ∈ ℝ)
74 elico2 13395 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3)))
7523, 69, 74mp2an 689 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3))
7675simp1bi 1144 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ)
77 0red 11224 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 ∈ ℝ)
78 1red 11222 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ∈ ℝ)
79 0lt1 11743 . . . . . . . . . . . . . . 15 0 < 1
8079a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 < 1)
8175simp2bi 1145 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ≤ 𝑚)
8277, 78, 76, 80, 81ltletrd 11381 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 0 < 𝑚)
8376, 82elrpd 13020 . . . . . . . . . . . 12 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ+)
8447adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → 𝑇 ∈ ℂ)
8543, 84subcld 11578 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (𝐹𝑇) ∈ ℂ)
8685abscld 15390 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → (abs‘(𝐹𝑇)) ∈ ℝ)
8783, 86sylan2 592 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ∈ ℝ)
8818adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 𝑅 ∈ ℝ)
8985absge0d 15398 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → 0 ≤ (abs‘(𝐹𝑇)))
9083, 89sylan2 592 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ (abs‘(𝐹𝑇)))
91 dchrvmasum.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
9291r19.21bi 3247 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ≤ 𝑅)
9373, 87, 88, 90, 92letrd 11378 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ 𝑅)
9493ralrimiva 3145 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (1[,)3)0 ≤ 𝑅)
95 biidd 262 . . . . . . . . . 10 (𝑚 = 1 → (0 ≤ 𝑅 ↔ 0 ≤ 𝑅))
9695rspcv 3608 . . . . . . . . 9 (1 ∈ (1[,)3) → (∀𝑚 ∈ (1[,)3)0 ≤ 𝑅 → 0 ≤ 𝑅))
9772, 94, 96mpsyl 68 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
9897adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑅)
9967, 98jca 511 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
10050recnd 11249 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℂ)
1015ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
102101, 15remulcld 11251 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
1034ad2antrr 723 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
104 log1 26434 . . . . . . . . 9 (log‘1) = 0
10551nncnd 12235 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
106105mullidd 11239 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
107 rpre 12989 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
108107adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
109 fznnfl 13834 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
110108, 109syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
111110simplbda 499 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
112106, 111eqbrtrd 5170 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
113 1red 11222 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
114107ad2antlr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
115113, 114, 55lemuldivd 13072 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
116112, 115mpbid 231 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
117 1rp 12985 . . . . . . . . . . . 12 1 ∈ ℝ+
118117a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
119118, 12logled 26475 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 ≤ (𝑥 / 𝑑) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑑))))
120116, 119mpbid 231 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘1) ≤ (log‘(𝑥 / 𝑑)))
121104, 120eqbrtrrid 5184 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘(𝑥 / 𝑑)))
122 rpregt0 12995 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
123122ad2antlr 724 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
124 divge0 12090 . . . . . . . 8 ((((log‘(𝑥 / 𝑑)) ∈ ℝ ∧ 0 ≤ (log‘(𝑥 / 𝑑))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
12513, 121, 123, 124syl21anc 835 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
126 mulge0 11739 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ ∧ 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
127103, 15, 125, 126syl12anc 834 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
128 absidm 15277 . . . . . . . . 9 ((𝐾𝑇) ∈ ℂ → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
12949, 128syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
130129adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
13141fvoveq1d 7434 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (abs‘(𝐹𝑇)) = (abs‘(𝐾𝑇)))
132 fveq2 6891 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → (log‘𝑚) = (log‘(𝑥 / 𝑑)))
133 id 22 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → 𝑚 = (𝑥 / 𝑑))
134132, 133oveq12d 7430 . . . . . . . . . . 11 (𝑚 = (𝑥 / 𝑑) → ((log‘𝑚) / 𝑚) = ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))
135134oveq2d 7428 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (𝐶 · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
136131, 135breq12d 5161 . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)) ↔ (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))))
137 dchrvmasum.1 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
138137ralrimiva 3145 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
139138ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
140 nndivre 12260 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
141108, 9, 140syl2an 595 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
142141adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ ℝ)
143 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → 3 ≤ (𝑥 / 𝑑))
144 elicopnf 13429 . . . . . . . . . . 11 (3 ∈ ℝ → ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑))))
14563, 144ax-mp 5 . . . . . . . . . 10 ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑)))
146142, 143, 145sylanbrc 582 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ (3[,)+∞))
147136, 139, 146rspcdva 3613 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
14813recnd 11249 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℂ)
149 rpcnne0 12999 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
150149ad2antlr 724 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
15155rpcnne0d 13032 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
152 divdiv2 11933 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
153148, 150, 151, 152syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
154 div23 11898 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
155148, 105, 150, 154syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
156153, 155eqtrd 2771 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
157156oveq2d 7428 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
15829ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
15915recnd 11249 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℂ)
160158, 159, 105mulassd 11244 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
161157, 160eqtr4d 2774 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
162161adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
163147, 162breqtrd 5174 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
164130, 163eqbrtrd 5170 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
165129adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
166131breq1d 5158 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ 𝑅 ↔ (abs‘(𝐾𝑇)) ≤ 𝑅))
16791ad3antrrr 727 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
168141adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ ℝ)
169116adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → 1 ≤ (𝑥 / 𝑑))
170 simpr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) < 3)
171 elico2 13395 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3)))
17223, 69, 171mp2an 689 . . . . . . . . 9 ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3))
173168, 169, 170, 172syl3anbrc 1342 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ (1[,)3))
174166, 167, 173rspcdva 3613 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(𝐾𝑇)) ≤ 𝑅)
175165, 174eqbrtrd 5170 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) ≤ 𝑅)
1768, 66, 99, 100, 102, 127, 164, 175fsumharmonic 26857 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
17729adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
1787, 177, 159fsummulc2 15737 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
179178oveq1d 7427 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
180176, 179breqtrrd 5176 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
18140leabsd 15368 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
18260, 40, 62, 180, 181letrd 11378 . . 3 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
183182adantrr 714 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
1841, 39, 40, 54, 183o1le 15606 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  wral 3060  wss 3948   class class class wbr 5148  cmpt 5231  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116  1c1 11117   + caddc 11119   · cmul 11121  +∞cpnf 11252  *cxr 11254   < clt 11255  cle 11256  cmin 11451   / cdiv 11878  cn 12219  3c3 12275  +crp 12981  [,)cico 13333  ...cfz 13491  cfl 13762  abscabs 15188  𝑟 crli 15436  𝑂(1)co1 15437  Σcsu 15639  Basecbs 17151  0gc0g 17392  ℤRHomczrh 21359  ℤ/nczn 21362  logclog 26403  DChrcdchr 27078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-inf2 9642  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-oadd 8476  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-xnn0 12552  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ioc 13336  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-fac 14241  df-bc 14270  df-hash 14298  df-shft 15021  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-limsup 15422  df-clim 15439  df-rlim 15440  df-o1 15441  df-lo1 15442  df-sum 15640  df-ef 16018  df-e 16019  df-sin 16020  df-cos 16021  df-tan 16022  df-pi 16023  df-dvds 16205  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-lp 22960  df-perf 22961  df-cn 23051  df-cnp 23052  df-haus 23139  df-cmp 23211  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cncf 24718  df-limc 25715  df-dv 25716  df-ulm 26228  df-log 26405  df-cxp 26406  df-atan 26713  df-em 26838
This theorem is referenced by:  dchrvmasumlem3  27345
  Copyright terms: Public domain W3C validator