MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dchrvmasumlem2 Structured version   Visualization version   GIF version

Theorem dchrvmasumlem2 27409
Description: Lemma for dchrvmasum 27436. (Contributed by Mario Carneiro, 4-May-2016.)
Hypotheses
Ref Expression
rpvmasum.z 𝑍 = (ℤ/nℤ‘𝑁)
rpvmasum.l 𝐿 = (ℤRHom‘𝑍)
rpvmasum.a (𝜑𝑁 ∈ ℕ)
rpvmasum.g 𝐺 = (DChr‘𝑁)
rpvmasum.d 𝐷 = (Base‘𝐺)
rpvmasum.1 1 = (0g𝐺)
dchrisum.b (𝜑𝑋𝐷)
dchrisum.n1 (𝜑𝑋1 )
dchrvmasum.f ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
dchrvmasum.g (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
dchrvmasum.c (𝜑𝐶 ∈ (0[,)+∞))
dchrvmasum.t (𝜑𝑇 ∈ ℂ)
dchrvmasum.1 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
dchrvmasum.r (𝜑𝑅 ∈ ℝ)
dchrvmasum.2 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
Assertion
Ref Expression
dchrvmasumlem2 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝑚, 1   𝑚,𝑑,𝑥,𝐶   𝐹,𝑑,𝑥   𝑚,𝐾   𝑚,𝑁,𝑥   𝜑,𝑑,𝑚,𝑥   𝑇,𝑑,𝑚,𝑥   𝑅,𝑑,𝑚,𝑥   𝑚,𝑍,𝑥   𝐷,𝑚,𝑥   𝐿,𝑑,𝑚,𝑥   𝑋,𝑑,𝑚,𝑥
Allowed substitution hints:   𝐷(𝑑)   1 (𝑑)   𝐹(𝑚)   𝐺(𝑥,𝑚,𝑑)   𝐾(𝑥,𝑑)   𝑁(𝑑)   𝑍(𝑑)

Proof of Theorem dchrvmasumlem2
StepHypRef Expression
1 1red 11175 . 2 (𝜑 → 1 ∈ ℝ)
2 dchrvmasum.c . . . . . . 7 (𝜑𝐶 ∈ (0[,)+∞))
3 elrege0 13415 . . . . . . 7 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
42, 3sylib 218 . . . . . 6 (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
54simpld 494 . . . . 5 (𝜑𝐶 ∈ ℝ)
65adantr 480 . . . 4 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℝ)
7 fzfid 13938 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
8 simpr 484 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
9 elfznn 13514 . . . . . . . . 9 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℕ)
109nnrpd 12993 . . . . . . . 8 (𝑑 ∈ (1...(⌊‘𝑥)) → 𝑑 ∈ ℝ+)
11 rpdivcl 12978 . . . . . . . 8 ((𝑥 ∈ ℝ+𝑑 ∈ ℝ+) → (𝑥 / 𝑑) ∈ ℝ+)
128, 10, 11syl2an 596 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ+)
1312relogcld 26532 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℝ)
148adantr 480 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ+)
1513, 14rerpdivcld 13026 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
167, 15fsumrecl 15700 . . . 4 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ)
176, 16remulcld 11204 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
18 dchrvmasum.r . . . . 5 (𝜑𝑅 ∈ ℝ)
19 3nn 12265 . . . . . . 7 3 ∈ ℕ
20 nnrp 12963 . . . . . . 7 (3 ∈ ℕ → 3 ∈ ℝ+)
21 relogcl 26484 . . . . . . 7 (3 ∈ ℝ+ → (log‘3) ∈ ℝ)
2219, 20, 21mp2b 10 . . . . . 6 (log‘3) ∈ ℝ
23 1re 11174 . . . . . 6 1 ∈ ℝ
2422, 23readdcli 11189 . . . . 5 ((log‘3) + 1) ∈ ℝ
25 remulcl 11153 . . . . 5 ((𝑅 ∈ ℝ ∧ ((log‘3) + 1) ∈ ℝ) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2618, 24, 25sylancl 586 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
2726adantr 480 . . 3 ((𝜑𝑥 ∈ ℝ+) → (𝑅 · ((log‘3) + 1)) ∈ ℝ)
28 rpssre 12959 . . . . 5 + ⊆ ℝ
295recnd 11202 . . . . 5 (𝜑𝐶 ∈ ℂ)
30 o1const 15586 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
3128, 29, 30sylancr 587 . . . 4 (𝜑 → (𝑥 ∈ ℝ+𝐶) ∈ 𝑂(1))
32 logfacrlim2 27137 . . . . 5 (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1
33 rlimo1 15583 . . . . 5 ((𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
3432, 33mp1i 13 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1))
356, 16, 31, 34o1mul2 15591 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥))) ∈ 𝑂(1))
3626recnd 11202 . . . 4 (𝜑 → (𝑅 · ((log‘3) + 1)) ∈ ℂ)
37 o1const 15586 . . . 4 ((ℝ+ ⊆ ℝ ∧ (𝑅 · ((log‘3) + 1)) ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3828, 36, 37sylancr 587 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈ 𝑂(1))
3917, 27, 35, 38o1add2 15590 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ 𝑂(1))
4017, 27readdcld 11203 . 2 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℝ)
41 dchrvmasum.g . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾)
4241eleq1d 2813 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → (𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ))
43 dchrvmasum.f . . . . . . . . . 10 ((𝜑𝑚 ∈ ℝ+) → 𝐹 ∈ ℂ)
4443ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4544ad2antrr 726 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ)
4642, 45, 12rspcdva 3589 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐾 ∈ ℂ)
47 dchrvmasum.t . . . . . . . 8 (𝜑𝑇 ∈ ℂ)
4847ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑇 ∈ ℂ)
4946, 48subcld 11533 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐾𝑇) ∈ ℂ)
5049abscld 15405 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℝ)
519adantl 481 . . . . 5 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℕ)
5250, 51nndivred 12240 . . . 4 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
537, 52fsumrecl 15700 . . 3 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℝ)
5453recnd 11202 . 2 ((𝜑𝑥 ∈ ℝ+) → Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑) ∈ ℂ)
5551nnrpd 12993 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℝ+)
5649absge0d 15413 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (abs‘(𝐾𝑇)))
5750, 55, 56divge0d 13035 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((abs‘(𝐾𝑇)) / 𝑑))
587, 52, 57fsumge0 15761 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
5953, 58absidd 15389 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑))
6059, 53eqeltrd 2828 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ ℝ)
6140recnd 11202 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈ ℂ)
6261abscld 15405 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈ ℝ)
63 3re 12266 . . . . . . . 8 3 ∈ ℝ
6463a1i 11 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 3 ∈ ℝ)
65 1le3 12393 . . . . . . 7 1 ≤ 3
6664, 65jctir 520 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (3 ∈ ℝ ∧ 1 ≤ 3))
6718adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝑅 ∈ ℝ)
6823rexri 11232 . . . . . . . . . 10 1 ∈ ℝ*
6963rexri 11232 . . . . . . . . . 10 3 ∈ ℝ*
70 1lt3 12354 . . . . . . . . . 10 1 < 3
71 lbico1 13361 . . . . . . . . . 10 ((1 ∈ ℝ* ∧ 3 ∈ ℝ* ∧ 1 < 3) → 1 ∈ (1[,)3))
7268, 69, 70, 71mp3an 1463 . . . . . . . . 9 1 ∈ (1[,)3)
73 0red 11177 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ∈ ℝ)
74 elico2 13371 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3)))
7523, 69, 74mp2an 692 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚𝑚 < 3))
7675simp1bi 1145 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ)
77 0red 11177 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 ∈ ℝ)
78 1red 11175 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ∈ ℝ)
79 0lt1 11700 . . . . . . . . . . . . . . 15 0 < 1
8079a1i 11 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 0 < 1)
8175simp2bi 1146 . . . . . . . . . . . . . 14 (𝑚 ∈ (1[,)3) → 1 ≤ 𝑚)
8277, 78, 76, 80, 81ltletrd 11334 . . . . . . . . . . . . 13 (𝑚 ∈ (1[,)3) → 0 < 𝑚)
8376, 82elrpd 12992 . . . . . . . . . . . 12 (𝑚 ∈ (1[,)3) → 𝑚 ∈ ℝ+)
8447adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑚 ∈ ℝ+) → 𝑇 ∈ ℂ)
8543, 84subcld 11533 . . . . . . . . . . . . 13 ((𝜑𝑚 ∈ ℝ+) → (𝐹𝑇) ∈ ℂ)
8685abscld 15405 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → (abs‘(𝐹𝑇)) ∈ ℝ)
8783, 86sylan2 593 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ∈ ℝ)
8818adantr 480 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 𝑅 ∈ ℝ)
8985absge0d 15413 . . . . . . . . . . . 12 ((𝜑𝑚 ∈ ℝ+) → 0 ≤ (abs‘(𝐹𝑇)))
9083, 89sylan2 593 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ (abs‘(𝐹𝑇)))
91 dchrvmasum.2 . . . . . . . . . . . 12 (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
9291r19.21bi 3229 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (1[,)3)) → (abs‘(𝐹𝑇)) ≤ 𝑅)
9373, 87, 88, 90, 92letrd 11331 . . . . . . . . . 10 ((𝜑𝑚 ∈ (1[,)3)) → 0 ≤ 𝑅)
9493ralrimiva 3125 . . . . . . . . 9 (𝜑 → ∀𝑚 ∈ (1[,)3)0 ≤ 𝑅)
95 biidd 262 . . . . . . . . . 10 (𝑚 = 1 → (0 ≤ 𝑅 ↔ 0 ≤ 𝑅))
9695rspcv 3584 . . . . . . . . 9 (1 ∈ (1[,)3) → (∀𝑚 ∈ (1[,)3)0 ≤ 𝑅 → 0 ≤ 𝑅))
9772, 94, 96mpsyl 68 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
9897adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 0 ≤ 𝑅)
9967, 98jca 511 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤ 𝑅))
10050recnd 11202 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(𝐾𝑇)) ∈ ℂ)
1015ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℝ)
102101, 15remulcld 11204 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ)
1034ad2antrr 726 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
104 log1 26494 . . . . . . . . 9 (log‘1) = 0
10551nncnd 12202 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑 ∈ ℂ)
106105mullidd 11192 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) = 𝑑)
107 rpre 12960 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
108107adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
109 fznnfl 13824 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
110108, 109syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ+) → (𝑑 ∈ (1...(⌊‘𝑥)) ↔ (𝑑 ∈ ℕ ∧ 𝑑𝑥)))
111110simplbda 499 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑑𝑥)
112106, 111eqbrtrd 5129 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 · 𝑑) ≤ 𝑥)
113 1red 11175 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ)
114107ad2antlr 727 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝑥 ∈ ℝ)
115113, 114, 55lemuldivd 13044 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((1 · 𝑑) ≤ 𝑥 ↔ 1 ≤ (𝑥 / 𝑑)))
116112, 115mpbid 232 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ≤ (𝑥 / 𝑑))
117 1rp 12955 . . . . . . . . . . . 12 1 ∈ ℝ+
118117a1i 11 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 1 ∈ ℝ+)
119118, 12logled 26536 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (1 ≤ (𝑥 / 𝑑) ↔ (log‘1) ≤ (log‘(𝑥 / 𝑑))))
120116, 119mpbid 232 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘1) ≤ (log‘(𝑥 / 𝑑)))
121104, 120eqbrtrrid 5143 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (log‘(𝑥 / 𝑑)))
122 rpregt0 12966 . . . . . . . . 9 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
123122ad2antlr 727 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℝ ∧ 0 < 𝑥))
124 divge0 12052 . . . . . . . 8 ((((log‘(𝑥 / 𝑑)) ∈ ℝ ∧ 0 ≤ (log‘(𝑥 / 𝑑))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
12513, 121, 123, 124syl21anc 837 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))
126 mulge0 11696 . . . . . . 7 (((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ (((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ ∧ 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
127103, 15, 125, 126syl12anc 836 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
128 absidm 15290 . . . . . . . . 9 ((𝐾𝑇) ∈ ℂ → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
12949, 128syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
130129adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
13141fvoveq1d 7409 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (abs‘(𝐹𝑇)) = (abs‘(𝐾𝑇)))
132 fveq2 6858 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → (log‘𝑚) = (log‘(𝑥 / 𝑑)))
133 id 22 . . . . . . . . . . . 12 (𝑚 = (𝑥 / 𝑑) → 𝑚 = (𝑥 / 𝑑))
134132, 133oveq12d 7405 . . . . . . . . . . 11 (𝑚 = (𝑥 / 𝑑) → ((log‘𝑚) / 𝑚) = ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))
135134oveq2d 7403 . . . . . . . . . 10 (𝑚 = (𝑥 / 𝑑) → (𝐶 · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
136131, 135breq12d 5120 . . . . . . . . 9 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)) ↔ (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))))
137 dchrvmasum.1 . . . . . . . . . . 11 ((𝜑𝑚 ∈ (3[,)+∞)) → (abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
138137ralrimiva 3125 . . . . . . . . . 10 (𝜑 → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
139138ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)))
140 nndivre 12227 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ)
141108, 9, 140syl2an 596 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑑) ∈ ℝ)
142141adantr 480 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ ℝ)
143 simpr 484 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → 3 ≤ (𝑥 / 𝑑))
144 elicopnf 13406 . . . . . . . . . . 11 (3 ∈ ℝ → ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑))))
14563, 144ax-mp 5 . . . . . . . . . 10 ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑)))
146142, 143, 145sylanbrc 583 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ (3[,)+∞))
147136, 139, 146rspcdva 3589 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))
14813recnd 11202 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑑)) ∈ ℂ)
149 rpcnne0 12970 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
150149ad2antlr 727 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0))
15155rpcnne0d 13004 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0))
152 divdiv2 11894 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
153148, 150, 151, 152syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥))
154 div23 11856 . . . . . . . . . . . . 13 (((log‘(𝑥 / 𝑑)) ∈ ℂ ∧ 𝑑 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
155148, 105, 150, 154syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
156153, 155eqtrd 2764 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))
157156oveq2d 7403 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
15829ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → 𝐶 ∈ ℂ)
15915recnd 11202 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℂ)
160158, 159, 105mulassd 11197 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)))
161157, 160eqtr4d 2767 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
162161adantr 480 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
163147, 162breqtrd 5133 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾𝑇)) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
164130, 163eqbrtrd 5129 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(abs‘(𝐾𝑇))) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑))
165129adantr 480 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) = (abs‘(𝐾𝑇)))
166131breq1d 5117 . . . . . . . 8 (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹𝑇)) ≤ 𝑅 ↔ (abs‘(𝐾𝑇)) ≤ 𝑅))
16791ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹𝑇)) ≤ 𝑅)
168141adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ ℝ)
169116adantr 480 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → 1 ≤ (𝑥 / 𝑑))
170 simpr 484 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) < 3)
171 elico2 13371 . . . . . . . . . 10 ((1 ∈ ℝ ∧ 3 ∈ ℝ*) → ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3)))
17223, 69, 171mp2an 692 . . . . . . . . 9 ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3))
173168, 169, 170, 172syl3anbrc 1344 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ (1[,)3))
174166, 167, 173rspcdva 3589 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(𝐾𝑇)) ≤ 𝑅)
175165, 174eqbrtrd 5129 . . . . . 6 ((((𝜑𝑥 ∈ ℝ+) ∧ 𝑑 ∈ (1...(⌊‘𝑥))) ∧ (𝑥 / 𝑑) < 3) → (abs‘(abs‘(𝐾𝑇))) ≤ 𝑅)
1768, 66, 99, 100, 102, 127, 164, 175fsumharmonic 26922 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
17729adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → 𝐶 ∈ ℂ)
1787, 177, 159fsummulc2 15750 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)))
179178oveq1d 7402 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) = (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
180176, 179breqtrrd 5135 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))))
18140leabsd 15381 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
18260, 40, 62, 180, 181letrd 11331 . . 3 ((𝜑𝑥 ∈ ℝ+) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
183182adantrr 717 . 2 ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (abs‘Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))))
1841, 39, 40, 54, 183o1le 15619 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾𝑇)) / 𝑑)) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914   class class class wbr 5107  cmpt 5188  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  cn 12186  3c3 12242  +crp 12951  [,)cico 13308  ...cfz 13468  cfl 13752  abscabs 15200  𝑟 crli 15451  𝑂(1)co1 15452  Σcsu 15652  Basecbs 17179  0gc0g 17402  ℤRHomczrh 21409  ℤ/nczn 21412  logclog 26463  DChrcdchr 27143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-o1 15456  df-lo1 15457  df-sum 15653  df-ef 16033  df-e 16034  df-sin 16035  df-cos 16036  df-tan 16037  df-pi 16038  df-dvds 16223  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768  df-ulm 26286  df-log 26465  df-cxp 26466  df-atan 26777  df-em 26903
This theorem is referenced by:  dchrvmasumlem3  27410
  Copyright terms: Public domain W3C validator