Proof of Theorem dchrvmasumlem2
Step | Hyp | Ref
| Expression |
1 | | 1red 10680 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
2 | | dchrvmasum.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
3 | | elrege0 12886 |
. . . . . . 7
⊢ (𝐶 ∈ (0[,)+∞) ↔
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) |
4 | 2, 3 | sylib 221 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
5 | 4 | simpld 498 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 5 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈
ℝ) |
7 | | fzfid 13390 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
8 | | simpr 488 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
9 | | elfznn 12985 |
. . . . . . . . 9
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) |
10 | 9 | nnrpd 12470 |
. . . . . . . 8
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℝ+) |
11 | | rpdivcl 12455 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → (𝑥 / 𝑑) ∈
ℝ+) |
12 | 8, 10, 11 | syl2an 598 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ+) |
13 | 12 | relogcld 25313 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑑)) ∈
ℝ) |
14 | 8 | adantr 484 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
15 | 13, 14 | rerpdivcld 12503 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑑)) / 𝑥) ∈ ℝ) |
16 | 7, 15 | fsumrecl 15139 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ) |
17 | 6, 16 | remulcld 10709 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ) |
18 | | dchrvmasum.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℝ) |
19 | | 3nn 11753 |
. . . . . . 7
⊢ 3 ∈
ℕ |
20 | | nnrp 12441 |
. . . . . . 7
⊢ (3 ∈
ℕ → 3 ∈ ℝ+) |
21 | | relogcl 25266 |
. . . . . . 7
⊢ (3 ∈
ℝ+ → (log‘3) ∈ ℝ) |
22 | 19, 20, 21 | mp2b 10 |
. . . . . 6
⊢
(log‘3) ∈ ℝ |
23 | | 1re 10679 |
. . . . . 6
⊢ 1 ∈
ℝ |
24 | 22, 23 | readdcli 10694 |
. . . . 5
⊢
((log‘3) + 1) ∈ ℝ |
25 | | remulcl 10660 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧
((log‘3) + 1) ∈ ℝ) → (𝑅 · ((log‘3) + 1)) ∈
ℝ) |
26 | 18, 24, 25 | sylancl 589 |
. . . 4
⊢ (𝜑 → (𝑅 · ((log‘3) + 1)) ∈
ℝ) |
27 | 26 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅 · ((log‘3) + 1))
∈ ℝ) |
28 | | rpssre 12437 |
. . . . 5
⊢
ℝ+ ⊆ ℝ |
29 | 5 | recnd 10707 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℂ) |
30 | | o1const 15024 |
. . . . 5
⊢
((ℝ+ ⊆ ℝ ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 𝐶) ∈
𝑂(1)) |
31 | 28, 29, 30 | sylancr 590 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 𝐶) ∈
𝑂(1)) |
32 | | logfacrlim2 25909 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
↦ Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟
1 |
33 | | rlimo1 15021 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
↦ Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1 →
(𝑥 ∈
ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1)) |
34 | 32, 33 | mp1i 13 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1)) |
35 | 6, 16, 31, 34 | o1mul2 15029 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥))) ∈ 𝑂(1)) |
36 | 26 | recnd 10707 |
. . . 4
⊢ (𝜑 → (𝑅 · ((log‘3) + 1)) ∈
ℂ) |
37 | | o1const 15024 |
. . . 4
⊢
((ℝ+ ⊆ ℝ ∧ (𝑅 · ((log‘3) + 1)) ∈
ℂ) → (𝑥 ∈
ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈
𝑂(1)) |
38 | 28, 36, 37 | sylancr 590 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1)))
∈ 𝑂(1)) |
39 | 17, 27, 35, 38 | o1add2 15028 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈
𝑂(1)) |
40 | 17, 27 | readdcld 10708 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈
ℝ) |
41 | | dchrvmasum.g |
. . . . . . . . 9
⊢ (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾) |
42 | 41 | eleq1d 2836 |
. . . . . . . 8
⊢ (𝑚 = (𝑥 / 𝑑) → (𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ)) |
43 | | dchrvmasum.f |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 𝐹 ∈
ℂ) |
44 | 43 | ralrimiva 3113 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ) |
45 | 44 | ad2antrr 725 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ∀𝑚 ∈
ℝ+ 𝐹
∈ ℂ) |
46 | 42, 45, 12 | rspcdva 3543 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝐾 ∈
ℂ) |
47 | | dchrvmasum.t |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ ℂ) |
48 | 47 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑇 ∈
ℂ) |
49 | 46, 48 | subcld 11035 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐾 − 𝑇) ∈
ℂ) |
50 | 49 | abscld 14844 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝐾
− 𝑇)) ∈
ℝ) |
51 | 9 | adantl 485 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) |
52 | 50, 51 | nndivred 11728 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝐾
− 𝑇)) / 𝑑) ∈
ℝ) |
53 | 7, 52 | fsumrecl 15139 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑) ∈ ℝ) |
54 | 53 | recnd 10707 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑) ∈ ℂ) |
55 | 51 | nnrpd 12470 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℝ+) |
56 | 49 | absge0d 14852 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (abs‘(𝐾
− 𝑇))) |
57 | 50, 55, 56 | divge0d 12512 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((abs‘(𝐾 − 𝑇)) / 𝑑)) |
58 | 7, 52, 57 | fsumge0 15198 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 ≤
Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) |
59 | 53, 58 | absidd 14830 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) |
60 | 59, 53 | eqeltrd 2852 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ∈ ℝ) |
61 | 40 | recnd 10707 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈
ℂ) |
62 | 61 | abscld 14844 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘((𝐶 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈
ℝ) |
63 | | 3re 11754 |
. . . . . . . 8
⊢ 3 ∈
ℝ |
64 | 63 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 3 ∈
ℝ) |
65 | | 1le3 11886 |
. . . . . . 7
⊢ 1 ≤
3 |
66 | 64, 65 | jctir 524 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (3 ∈
ℝ ∧ 1 ≤ 3)) |
67 | 18 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅 ∈
ℝ) |
68 | 23 | rexri 10737 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ* |
69 | 63 | rexri 10737 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ* |
70 | | 1lt3 11847 |
. . . . . . . . . 10
⊢ 1 <
3 |
71 | | lbico1 12833 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ* ∧ 3 ∈ ℝ* ∧ 1 < 3)
→ 1 ∈ (1[,)3)) |
72 | 68, 69, 70, 71 | mp3an 1458 |
. . . . . . . . 9
⊢ 1 ∈
(1[,)3) |
73 | | 0red 10682 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → 0 ∈
ℝ) |
74 | | elico2 12843 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ∧ 𝑚 < 3))) |
75 | 23, 69, 74 | mp2an 691 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤
𝑚 ∧ 𝑚 < 3)) |
76 | 75 | simp1bi 1142 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (1[,)3) → 𝑚 ∈
ℝ) |
77 | | 0red 10682 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) → 0 ∈
ℝ) |
78 | | 1red 10680 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) → 1 ∈
ℝ) |
79 | | 0lt1 11200 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
80 | 79 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) → 0 <
1) |
81 | 75 | simp2bi 1143 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) → 1 ≤
𝑚) |
82 | 77, 78, 76, 80, 81 | ltletrd 10838 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (1[,)3) → 0 <
𝑚) |
83 | 76, 82 | elrpd 12469 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (1[,)3) → 𝑚 ∈
ℝ+) |
84 | 47 | adantr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 𝑇 ∈
ℂ) |
85 | 43, 84 | subcld 11035 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → (𝐹 − 𝑇) ∈ ℂ) |
86 | 85 | abscld 14844 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) →
(abs‘(𝐹 − 𝑇)) ∈
ℝ) |
87 | 83, 86 | sylan2 595 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → (abs‘(𝐹 − 𝑇)) ∈ ℝ) |
88 | 18 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → 𝑅 ∈ ℝ) |
89 | 85 | absge0d 14852 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 0 ≤
(abs‘(𝐹 − 𝑇))) |
90 | 83, 89 | sylan2 595 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → 0 ≤
(abs‘(𝐹 − 𝑇))) |
91 | | dchrvmasum.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹 − 𝑇)) ≤ 𝑅) |
92 | 91 | r19.21bi 3137 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → (abs‘(𝐹 − 𝑇)) ≤ 𝑅) |
93 | 73, 87, 88, 90, 92 | letrd 10835 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → 0 ≤ 𝑅) |
94 | 93 | ralrimiva 3113 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑚 ∈ (1[,)3)0 ≤ 𝑅) |
95 | | biidd 265 |
. . . . . . . . . 10
⊢ (𝑚 = 1 → (0 ≤ 𝑅 ↔ 0 ≤ 𝑅)) |
96 | 95 | rspcv 3536 |
. . . . . . . . 9
⊢ (1 ∈
(1[,)3) → (∀𝑚
∈ (1[,)3)0 ≤ 𝑅
→ 0 ≤ 𝑅)) |
97 | 72, 94, 96 | mpsyl 68 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝑅) |
98 | 97 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 ≤
𝑅) |
99 | 67, 98 | jca 515 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤
𝑅)) |
100 | 50 | recnd 10707 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝐾
− 𝑇)) ∈
ℂ) |
101 | 5 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝐶 ∈
ℝ) |
102 | 101, 15 | remulcld 10709 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ·
((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ) |
103 | 4 | ad2antrr 725 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ∈ ℝ
∧ 0 ≤ 𝐶)) |
104 | | log1 25276 |
. . . . . . . . 9
⊢
(log‘1) = 0 |
105 | 51 | nncnd 11690 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℂ) |
106 | 105 | mulid2d 10697 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 · 𝑑) =
𝑑) |
107 | | rpre 12438 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
108 | 107 | adantl 485 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
109 | | fznnfl 13279 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → (𝑑 ∈
(1...(⌊‘𝑥))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝑥))) |
110 | 108, 109 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑑 ∈
(1...(⌊‘𝑥))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝑥))) |
111 | 110 | simplbda 503 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ≤ 𝑥) |
112 | 106, 111 | eqbrtrd 5054 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 · 𝑑) ≤
𝑥) |
113 | | 1red 10680 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
114 | 107 | ad2antlr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
115 | 113, 114,
55 | lemuldivd 12521 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((1 · 𝑑) ≤
𝑥 ↔ 1 ≤ (𝑥 / 𝑑))) |
116 | 112, 115 | mpbid 235 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ (𝑥 / 𝑑)) |
117 | | 1rp 12434 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ+ |
118 | 117 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ+) |
119 | 118, 12 | logled 25317 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 ≤ (𝑥 / 𝑑) ↔ (log‘1) ≤
(log‘(𝑥 / 𝑑)))) |
120 | 116, 119 | mpbid 235 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (log‘1) ≤ (log‘(𝑥 / 𝑑))) |
121 | 104, 120 | eqbrtrrid 5068 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (log‘(𝑥
/ 𝑑))) |
122 | | rpregt0 12444 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
123 | 122 | ad2antlr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
124 | | divge0 11547 |
. . . . . . . 8
⊢
((((log‘(𝑥 /
𝑑)) ∈ ℝ ∧ 0
≤ (log‘(𝑥 / 𝑑))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤
((log‘(𝑥 / 𝑑)) / 𝑥)) |
125 | 13, 121, 123, 124 | syl21anc 836 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥)) |
126 | | mulge0 11196 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧
(((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ ∧ 0 ≤
((log‘(𝑥 / 𝑑)) / 𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥))) |
127 | 103, 15, 125, 126 | syl12anc 835 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (𝐶 ·
((log‘(𝑥 / 𝑑)) / 𝑥))) |
128 | | absidm 14731 |
. . . . . . . . 9
⊢ ((𝐾 − 𝑇) ∈ ℂ →
(abs‘(abs‘(𝐾
− 𝑇))) =
(abs‘(𝐾 − 𝑇))) |
129 | 49, 128 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(abs‘(𝐾 − 𝑇))) = (abs‘(𝐾 − 𝑇))) |
130 | 129 | adantr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) →
(abs‘(abs‘(𝐾
− 𝑇))) =
(abs‘(𝐾 − 𝑇))) |
131 | 41 | fvoveq1d 7172 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑥 / 𝑑) → (abs‘(𝐹 − 𝑇)) = (abs‘(𝐾 − 𝑇))) |
132 | | fveq2 6658 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑥 / 𝑑) → (log‘𝑚) = (log‘(𝑥 / 𝑑))) |
133 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑥 / 𝑑) → 𝑚 = (𝑥 / 𝑑)) |
134 | 132, 133 | oveq12d 7168 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑥 / 𝑑) → ((log‘𝑚) / 𝑚) = ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) |
135 | 134 | oveq2d 7166 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑥 / 𝑑) → (𝐶 · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))) |
136 | 131, 135 | breq12d 5045 |
. . . . . . . . 9
⊢ (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)) ↔ (abs‘(𝐾 − 𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))) |
137 | | dchrvmasum.1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (3[,)+∞)) →
(abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) |
138 | 137 | ralrimiva 3113 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) |
139 | 138 | ad3antrrr 729 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → ∀𝑚 ∈
(3[,)+∞)(abs‘(𝐹
− 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) |
140 | | nndivre 11715 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ) |
141 | 108, 9, 140 | syl2an 598 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ) |
142 | 141 | adantr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ ℝ) |
143 | | simpr 488 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → 3 ≤ (𝑥 / 𝑑)) |
144 | | elicopnf 12877 |
. . . . . . . . . . 11
⊢ (3 ∈
ℝ → ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔
((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑)))) |
145 | 63, 144 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑))) |
146 | 142, 143,
145 | sylanbrc 586 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ (3[,)+∞)) |
147 | 136, 139,
146 | rspcdva 3543 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾 − 𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))) |
148 | 13 | recnd 10707 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑑)) ∈
ℂ) |
149 | | rpcnne0 12448 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
150 | 149 | ad2antlr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
151 | 55 | rpcnne0d 12481 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑑 ∈ ℂ
∧ 𝑑 ≠
0)) |
152 | | divdiv2 11390 |
. . . . . . . . . . . . 13
⊢
(((log‘(𝑥 /
𝑑)) ∈ ℂ ∧
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) →
((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥)) |
153 | 148, 150,
151, 152 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥)) |
154 | | div23 11355 |
. . . . . . . . . . . . 13
⊢
(((log‘(𝑥 /
𝑑)) ∈ ℂ ∧
𝑑 ∈ ℂ ∧
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0)) →
(((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)) |
155 | 148, 105,
150, 154 | syl3anc 1368 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((log‘(𝑥 /
𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)) |
156 | 153, 155 | eqtrd 2793 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)) |
157 | 156 | oveq2d 7166 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ·
((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))) |
158 | 29 | ad2antrr 725 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝐶 ∈
ℂ) |
159 | 15 | recnd 10707 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑑)) / 𝑥) ∈ ℂ) |
160 | 158, 159,
105 | mulassd 10702 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((𝐶 ·
((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))) |
161 | 157, 160 | eqtr4d 2796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ·
((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑)) |
162 | 161 | adantr 484 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑)) |
163 | 147, 162 | breqtrd 5058 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾 − 𝑇)) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑)) |
164 | 130, 163 | eqbrtrd 5054 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) →
(abs‘(abs‘(𝐾
− 𝑇))) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑)) |
165 | 129 | adantr 484 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) →
(abs‘(abs‘(𝐾
− 𝑇))) =
(abs‘(𝐾 − 𝑇))) |
166 | 131 | breq1d 5042 |
. . . . . . . 8
⊢ (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹 − 𝑇)) ≤ 𝑅 ↔ (abs‘(𝐾 − 𝑇)) ≤ 𝑅)) |
167 | 91 | ad3antrrr 729 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹 − 𝑇)) ≤ 𝑅) |
168 | 141 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ ℝ) |
169 | 116 | adantr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → 1 ≤ (𝑥 / 𝑑)) |
170 | | simpr 488 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) < 3) |
171 | | elico2 12843 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ 3 ∈ ℝ*) → ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3))) |
172 | 23, 69, 171 | mp2an 691 |
. . . . . . . . 9
⊢ ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3)) |
173 | 168, 169,
170, 172 | syl3anbrc 1340 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ (1[,)3)) |
174 | 166, 167,
173 | rspcdva 3543 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) →
(abs‘(𝐾 − 𝑇)) ≤ 𝑅) |
175 | 165, 174 | eqbrtrd 5054 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) →
(abs‘(abs‘(𝐾
− 𝑇))) ≤ 𝑅) |
176 | 8, 66, 99, 100, 102, 127, 164, 175 | fsumharmonic 25696 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1)))) |
177 | 29 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈
ℂ) |
178 | 7, 177, 159 | fsummulc2 15187 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥))) |
179 | 178 | oveq1d 7165 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) =
(Σ𝑑 ∈
(1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1)))) |
180 | 176, 179 | breqtrrd 5060 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ≤ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1)))) |
181 | 40 | leabsd 14822 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ≤
(abs‘((𝐶 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1))))) |
182 | 60, 40, 62, 180, 181 | letrd 10835 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1))))) |
183 | 182 | adantrr 716 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1))))) |
184 | 1, 39, 40, 54, 183 | o1le 15057 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ∈ 𝑂(1)) |