Proof of Theorem dchrvmasumlem2
Step | Hyp | Ref
| Expression |
1 | | 1red 10329 |
. 2
⊢ (𝜑 → 1 ∈
ℝ) |
2 | | dchrvmasum.c |
. . . . . . 7
⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
3 | | elrege0 12529 |
. . . . . . 7
⊢ (𝐶 ∈ (0[,)+∞) ↔
(𝐶 ∈ ℝ ∧ 0
≤ 𝐶)) |
4 | 2, 3 | sylib 210 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) |
5 | 4 | simpld 489 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℝ) |
6 | 5 | adantr 473 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈
ℝ) |
7 | | fzfid 13027 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
8 | | simpr 478 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
9 | | elfznn 12624 |
. . . . . . . . 9
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℕ) |
10 | 9 | nnrpd 12115 |
. . . . . . . 8
⊢ (𝑑 ∈
(1...(⌊‘𝑥))
→ 𝑑 ∈
ℝ+) |
11 | | rpdivcl 12101 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℝ+
∧ 𝑑 ∈
ℝ+) → (𝑥 / 𝑑) ∈
ℝ+) |
12 | 8, 10, 11 | syl2an 590 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ+) |
13 | | relogcl 24663 |
. . . . . . 7
⊢ ((𝑥 / 𝑑) ∈ ℝ+ →
(log‘(𝑥 / 𝑑)) ∈
ℝ) |
14 | 12, 13 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑑)) ∈
ℝ) |
15 | 8 | adantr 473 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ+) |
16 | 14, 15 | rerpdivcld 12148 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑑)) / 𝑥) ∈ ℝ) |
17 | 7, 16 | fsumrecl 14806 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ) |
18 | 6, 17 | remulcld 10359 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ) |
19 | | dchrvmasum.r |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ ℝ) |
20 | | 3nn 11392 |
. . . . . . 7
⊢ 3 ∈
ℕ |
21 | | nnrp 12087 |
. . . . . . 7
⊢ (3 ∈
ℕ → 3 ∈ ℝ+) |
22 | | relogcl 24663 |
. . . . . . 7
⊢ (3 ∈
ℝ+ → (log‘3) ∈ ℝ) |
23 | 20, 21, 22 | mp2b 10 |
. . . . . 6
⊢
(log‘3) ∈ ℝ |
24 | | 1re 10328 |
. . . . . 6
⊢ 1 ∈
ℝ |
25 | 23, 24 | readdcli 10344 |
. . . . 5
⊢
((log‘3) + 1) ∈ ℝ |
26 | | remulcl 10309 |
. . . . 5
⊢ ((𝑅 ∈ ℝ ∧
((log‘3) + 1) ∈ ℝ) → (𝑅 · ((log‘3) + 1)) ∈
ℝ) |
27 | 19, 25, 26 | sylancl 581 |
. . . 4
⊢ (𝜑 → (𝑅 · ((log‘3) + 1)) ∈
ℝ) |
28 | 27 | adantr 473 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅 · ((log‘3) + 1))
∈ ℝ) |
29 | | rpssre 12081 |
. . . . 5
⊢
ℝ+ ⊆ ℝ |
30 | 5 | recnd 10357 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ ℂ) |
31 | | o1const 14691 |
. . . . 5
⊢
((ℝ+ ⊆ ℝ ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 𝐶) ∈
𝑂(1)) |
32 | 29, 30, 31 | sylancr 582 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 𝐶) ∈
𝑂(1)) |
33 | | logfacrlim2 25303 |
. . . . 5
⊢ (𝑥 ∈ ℝ+
↦ Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟
1 |
34 | | rlimo1 14688 |
. . . . 5
⊢ ((𝑥 ∈ ℝ+
↦ Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ⇝𝑟 1 →
(𝑥 ∈
ℝ+ ↦ Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1)) |
35 | 33, 34 | mp1i 13 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ 𝑂(1)) |
36 | 6, 17, 32, 35 | o1mul2 14696 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥))) ∈ 𝑂(1)) |
37 | 27 | recnd 10357 |
. . . 4
⊢ (𝜑 → (𝑅 · ((log‘3) + 1)) ∈
ℂ) |
38 | | o1const 14691 |
. . . 4
⊢
((ℝ+ ⊆ ℝ ∧ (𝑅 · ((log‘3) + 1)) ∈
ℂ) → (𝑥 ∈
ℝ+ ↦ (𝑅 · ((log‘3) + 1))) ∈
𝑂(1)) |
39 | 29, 37, 38 | sylancr 582 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (𝑅 · ((log‘3) + 1)))
∈ 𝑂(1)) |
40 | 18, 28, 36, 39 | o1add2 14695 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈
𝑂(1)) |
41 | 18, 28 | readdcld 10358 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈
ℝ) |
42 | | dchrvmasum.g |
. . . . . . . . 9
⊢ (𝑚 = (𝑥 / 𝑑) → 𝐹 = 𝐾) |
43 | 42 | eleq1d 2863 |
. . . . . . . 8
⊢ (𝑚 = (𝑥 / 𝑑) → (𝐹 ∈ ℂ ↔ 𝐾 ∈ ℂ)) |
44 | | dchrvmasum.f |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 𝐹 ∈
ℂ) |
45 | 44 | ralrimiva 3147 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑚 ∈ ℝ+ 𝐹 ∈ ℂ) |
46 | 45 | ad2antrr 718 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ∀𝑚 ∈
ℝ+ 𝐹
∈ ℂ) |
47 | 43, 46, 12 | rspcdva 3503 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝐾 ∈
ℂ) |
48 | | dchrvmasum.t |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ ℂ) |
49 | 48 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑇 ∈
ℂ) |
50 | 47, 49 | subcld 10684 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐾 − 𝑇) ∈
ℂ) |
51 | 50 | abscld 14516 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝐾
− 𝑇)) ∈
ℝ) |
52 | 9 | adantl 474 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℕ) |
53 | 51, 52 | nndivred 11367 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((abs‘(𝐾
− 𝑇)) / 𝑑) ∈
ℝ) |
54 | 7, 53 | fsumrecl 14806 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑) ∈ ℝ) |
55 | 54 | recnd 10357 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑) ∈ ℂ) |
56 | 52 | nnrpd 12115 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℝ+) |
57 | 50 | absge0d 14524 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (abs‘(𝐾
− 𝑇))) |
58 | 51, 56, 57 | divge0d 12157 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((abs‘(𝐾 − 𝑇)) / 𝑑)) |
59 | 7, 53, 58 | fsumge0 14865 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 ≤
Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) |
60 | 54, 59 | absidd 14502 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) = Σ𝑑 ∈ (1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) |
61 | 60, 54 | eqeltrd 2878 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ∈ ℝ) |
62 | 41 | recnd 10357 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ∈
ℂ) |
63 | 62 | abscld 14516 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘((𝐶 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1)))) ∈
ℝ) |
64 | | 3re 11393 |
. . . . . . . 8
⊢ 3 ∈
ℝ |
65 | 64 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 3 ∈
ℝ) |
66 | | 1le3 11532 |
. . . . . . 7
⊢ 1 ≤
3 |
67 | 65, 66 | jctir 517 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (3 ∈
ℝ ∧ 1 ≤ 3)) |
68 | 19 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑅 ∈
ℝ) |
69 | 24 | rexri 10387 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ* |
70 | 64 | rexri 10387 |
. . . . . . . . . 10
⊢ 3 ∈
ℝ* |
71 | | 1lt3 11493 |
. . . . . . . . . 10
⊢ 1 <
3 |
72 | | lbico1 12477 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ* ∧ 3 ∈ ℝ* ∧ 1 < 3)
→ 1 ∈ (1[,)3)) |
73 | 69, 70, 71, 72 | mp3an 1586 |
. . . . . . . . 9
⊢ 1 ∈
(1[,)3) |
74 | | 0red 10332 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → 0 ∈
ℝ) |
75 | | elico2 12486 |
. . . . . . . . . . . . . . 15
⊢ ((1
∈ ℝ ∧ 3 ∈ ℝ*) → (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤ 𝑚 ∧ 𝑚 < 3))) |
76 | 24, 70, 75 | mp2an 684 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) ↔ (𝑚 ∈ ℝ ∧ 1 ≤
𝑚 ∧ 𝑚 < 3)) |
77 | 76 | simp1bi 1176 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (1[,)3) → 𝑚 ∈
ℝ) |
78 | | 0red 10332 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) → 0 ∈
ℝ) |
79 | | 1red 10329 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) → 1 ∈
ℝ) |
80 | | 0lt1 10842 |
. . . . . . . . . . . . . . 15
⊢ 0 <
1 |
81 | 80 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) → 0 <
1) |
82 | 76 | simp2bi 1177 |
. . . . . . . . . . . . . 14
⊢ (𝑚 ∈ (1[,)3) → 1 ≤
𝑚) |
83 | 78, 79, 77, 81, 82 | ltletrd 10487 |
. . . . . . . . . . . . 13
⊢ (𝑚 ∈ (1[,)3) → 0 <
𝑚) |
84 | 77, 83 | elrpd 12114 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈ (1[,)3) → 𝑚 ∈
ℝ+) |
85 | 48 | adantr 473 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 𝑇 ∈
ℂ) |
86 | 44, 85 | subcld 10684 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → (𝐹 − 𝑇) ∈ ℂ) |
87 | 86 | abscld 14516 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) →
(abs‘(𝐹 − 𝑇)) ∈
ℝ) |
88 | 84, 87 | sylan2 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → (abs‘(𝐹 − 𝑇)) ∈ ℝ) |
89 | 19 | adantr 473 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → 𝑅 ∈ ℝ) |
90 | 86 | absge0d 14524 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑚 ∈ ℝ+) → 0 ≤
(abs‘(𝐹 − 𝑇))) |
91 | 84, 90 | sylan2 587 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → 0 ≤
(abs‘(𝐹 − 𝑇))) |
92 | | dchrvmasum.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹 − 𝑇)) ≤ 𝑅) |
93 | 92 | r19.21bi 3113 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → (abs‘(𝐹 − 𝑇)) ≤ 𝑅) |
94 | 74, 88, 89, 91, 93 | letrd 10484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑚 ∈ (1[,)3)) → 0 ≤ 𝑅) |
95 | 94 | ralrimiva 3147 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑚 ∈ (1[,)3)0 ≤ 𝑅) |
96 | | biidd 254 |
. . . . . . . . . 10
⊢ (𝑚 = 1 → (0 ≤ 𝑅 ↔ 0 ≤ 𝑅)) |
97 | 96 | rspcv 3493 |
. . . . . . . . 9
⊢ (1 ∈
(1[,)3) → (∀𝑚
∈ (1[,)3)0 ≤ 𝑅
→ 0 ≤ 𝑅)) |
98 | 73, 95, 97 | mpsyl 68 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ 𝑅) |
99 | 98 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 0 ≤
𝑅) |
100 | 68, 99 | jca 508 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑅 ∈ ℝ ∧ 0 ≤
𝑅)) |
101 | 51 | recnd 10357 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(𝐾
− 𝑇)) ∈
ℂ) |
102 | 5 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝐶 ∈
ℝ) |
103 | 102, 16 | remulcld 10359 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ·
((log‘(𝑥 / 𝑑)) / 𝑥)) ∈ ℝ) |
104 | 4 | ad2antrr 718 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ∈ ℝ
∧ 0 ≤ 𝐶)) |
105 | | log1 24673 |
. . . . . . . . 9
⊢
(log‘1) = 0 |
106 | 52 | nncnd 11330 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ∈
ℂ) |
107 | 106 | mulid2d 10347 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 · 𝑑) =
𝑑) |
108 | | rpre 12082 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
109 | 108 | adantl 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ) |
110 | | fznnfl 12916 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → (𝑑 ∈
(1...(⌊‘𝑥))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝑥))) |
111 | 109, 110 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝑑 ∈
(1...(⌊‘𝑥))
↔ (𝑑 ∈ ℕ
∧ 𝑑 ≤ 𝑥))) |
112 | 111 | simplbda 494 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑑 ≤ 𝑥) |
113 | 107, 112 | eqbrtrd 4865 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 · 𝑑) ≤
𝑥) |
114 | | 1red 10329 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ) |
115 | 108 | ad2antlr 719 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝑥 ∈
ℝ) |
116 | 114, 115,
56 | lemuldivd 12166 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((1 · 𝑑) ≤
𝑥 ↔ 1 ≤ (𝑥 / 𝑑))) |
117 | 113, 116 | mpbid 224 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ≤ (𝑥 / 𝑑)) |
118 | | 1rp 12078 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ+ |
119 | 118 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 1 ∈ ℝ+) |
120 | 119, 12 | logled 24714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (1 ≤ (𝑥 / 𝑑) ↔ (log‘1) ≤
(log‘(𝑥 / 𝑑)))) |
121 | 117, 120 | mpbid 224 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (log‘1) ≤ (log‘(𝑥 / 𝑑))) |
122 | 105, 121 | syl5eqbrr 4879 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (log‘(𝑥
/ 𝑑))) |
123 | | rpregt0 12090 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
124 | 123 | ad2antlr 719 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℝ
∧ 0 < 𝑥)) |
125 | | divge0 11184 |
. . . . . . . 8
⊢
((((log‘(𝑥 /
𝑑)) ∈ ℝ ∧ 0
≤ (log‘(𝑥 / 𝑑))) ∧ (𝑥 ∈ ℝ ∧ 0 < 𝑥)) → 0 ≤
((log‘(𝑥 / 𝑑)) / 𝑥)) |
126 | 14, 122, 124, 125 | syl21anc 867 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ ((log‘(𝑥 / 𝑑)) / 𝑥)) |
127 | | mulge0 10838 |
. . . . . . 7
⊢ (((𝐶 ∈ ℝ ∧ 0 ≤
𝐶) ∧
(((log‘(𝑥 / 𝑑)) / 𝑥) ∈ ℝ ∧ 0 ≤
((log‘(𝑥 / 𝑑)) / 𝑥))) → 0 ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥))) |
128 | 104, 16, 126, 127 | syl12anc 866 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 0 ≤ (𝐶 ·
((log‘(𝑥 / 𝑑)) / 𝑥))) |
129 | | absidm 14404 |
. . . . . . . . 9
⊢ ((𝐾 − 𝑇) ∈ ℂ →
(abs‘(abs‘(𝐾
− 𝑇))) =
(abs‘(𝐾 − 𝑇))) |
130 | 50, 129 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (abs‘(abs‘(𝐾 − 𝑇))) = (abs‘(𝐾 − 𝑇))) |
131 | 130 | adantr 473 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) →
(abs‘(abs‘(𝐾
− 𝑇))) =
(abs‘(𝐾 − 𝑇))) |
132 | 42 | fvoveq1d 6900 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑥 / 𝑑) → (abs‘(𝐹 − 𝑇)) = (abs‘(𝐾 − 𝑇))) |
133 | | fveq2 6411 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑥 / 𝑑) → (log‘𝑚) = (log‘(𝑥 / 𝑑))) |
134 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑚 = (𝑥 / 𝑑) → 𝑚 = (𝑥 / 𝑑)) |
135 | 133, 134 | oveq12d 6896 |
. . . . . . . . . . 11
⊢ (𝑚 = (𝑥 / 𝑑) → ((log‘𝑚) / 𝑚) = ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) |
136 | 135 | oveq2d 6894 |
. . . . . . . . . 10
⊢ (𝑚 = (𝑥 / 𝑑) → (𝐶 · ((log‘𝑚) / 𝑚)) = (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))) |
137 | 132, 136 | breq12d 4856 |
. . . . . . . . 9
⊢ (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚)) ↔ (abs‘(𝐾 − 𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))))) |
138 | | dchrvmasum.1 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑚 ∈ (3[,)+∞)) →
(abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) |
139 | 138 | ralrimiva 3147 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑚 ∈ (3[,)+∞)(abs‘(𝐹 − 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) |
140 | 139 | ad3antrrr 722 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → ∀𝑚 ∈
(3[,)+∞)(abs‘(𝐹
− 𝑇)) ≤ (𝐶 · ((log‘𝑚) / 𝑚))) |
141 | | nndivre 11354 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ ∧ 𝑑 ∈ ℕ) → (𝑥 / 𝑑) ∈ ℝ) |
142 | 109, 9, 141 | syl2an 590 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑑) ∈
ℝ) |
143 | 142 | adantr 473 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ ℝ) |
144 | | simpr 478 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → 3 ≤ (𝑥 / 𝑑)) |
145 | | elicopnf 12519 |
. . . . . . . . . . 11
⊢ (3 ∈
ℝ → ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔
((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑)))) |
146 | 64, 145 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑥 / 𝑑) ∈ (3[,)+∞) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 3 ≤ (𝑥 / 𝑑))) |
147 | 143, 144,
146 | sylanbrc 579 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (𝑥 / 𝑑) ∈ (3[,)+∞)) |
148 | 137, 140,
147 | rspcdva 3503 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾 − 𝑇)) ≤ (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)))) |
149 | 14 | recnd 10357 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑑)) ∈
ℂ) |
150 | | rpcnne0 12094 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
151 | 150 | ad2antlr 719 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑥 ∈ ℂ
∧ 𝑥 ≠
0)) |
152 | 56 | rpcnne0d 12126 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝑑 ∈ ℂ
∧ 𝑑 ≠
0)) |
153 | | divdiv2 11029 |
. . . . . . . . . . . . 13
⊢
(((log‘(𝑥 /
𝑑)) ∈ ℂ ∧
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0) ∧ (𝑑 ∈ ℂ ∧ 𝑑 ≠ 0)) →
((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥)) |
154 | 149, 151,
152, 153 | syl3anc 1491 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥)) |
155 | | div23 10996 |
. . . . . . . . . . . . 13
⊢
(((log‘(𝑥 /
𝑑)) ∈ ℂ ∧
𝑑 ∈ ℂ ∧
(𝑥 ∈ ℂ ∧
𝑥 ≠ 0)) →
(((log‘(𝑥 / 𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)) |
156 | 149, 106,
151, 155 | syl3anc 1491 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (((log‘(𝑥 /
𝑑)) · 𝑑) / 𝑥) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)) |
157 | 154, 156 | eqtrd 2833 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑑)) / (𝑥 / 𝑑)) = (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑)) |
158 | 157 | oveq2d 6894 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ·
((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))) |
159 | 30 | ad2antrr 718 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ 𝐶 ∈
ℂ) |
160 | 16 | recnd 10357 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑑)) / 𝑥) ∈ ℂ) |
161 | 159, 160,
106 | mulassd 10352 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ ((𝐶 ·
((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑) = (𝐶 · (((log‘(𝑥 / 𝑑)) / 𝑥) · 𝑑))) |
162 | 158, 161 | eqtr4d 2836 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
→ (𝐶 ·
((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑)) |
163 | 162 | adantr 473 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (𝐶 · ((log‘(𝑥 / 𝑑)) / (𝑥 / 𝑑))) = ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑)) |
164 | 148, 163 | breqtrd 4869 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) → (abs‘(𝐾 − 𝑇)) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑)) |
165 | 131, 164 | eqbrtrd 4865 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ 3 ≤ (𝑥 / 𝑑)) →
(abs‘(abs‘(𝐾
− 𝑇))) ≤ ((𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) · 𝑑)) |
166 | 130 | adantr 473 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) →
(abs‘(abs‘(𝐾
− 𝑇))) =
(abs‘(𝐾 − 𝑇))) |
167 | 132 | breq1d 4853 |
. . . . . . . 8
⊢ (𝑚 = (𝑥 / 𝑑) → ((abs‘(𝐹 − 𝑇)) ≤ 𝑅 ↔ (abs‘(𝐾 − 𝑇)) ≤ 𝑅)) |
168 | 92 | ad3antrrr 722 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → ∀𝑚 ∈ (1[,)3)(abs‘(𝐹 − 𝑇)) ≤ 𝑅) |
169 | 142 | adantr 473 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ ℝ) |
170 | 117 | adantr 473 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → 1 ≤ (𝑥 / 𝑑)) |
171 | | simpr 478 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) < 3) |
172 | | elico2 12486 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ ∧ 3 ∈ ℝ*) → ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3))) |
173 | 24, 70, 172 | mp2an 684 |
. . . . . . . . 9
⊢ ((𝑥 / 𝑑) ∈ (1[,)3) ↔ ((𝑥 / 𝑑) ∈ ℝ ∧ 1 ≤ (𝑥 / 𝑑) ∧ (𝑥 / 𝑑) < 3)) |
174 | 169, 170,
171, 173 | syl3anbrc 1444 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) → (𝑥 / 𝑑) ∈ (1[,)3)) |
175 | 167, 168,
174 | rspcdva 3503 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) →
(abs‘(𝐾 − 𝑇)) ≤ 𝑅) |
176 | 166, 175 | eqbrtrd 4865 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑑 ∈
(1...(⌊‘𝑥)))
∧ (𝑥 / 𝑑) < 3) →
(abs‘(abs‘(𝐾
− 𝑇))) ≤ 𝑅) |
177 | 8, 67, 100, 101, 103, 128, 165, 176 | fsumharmonic 25090 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ≤ (Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1)))) |
178 | 30 | adantr 473 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐶 ∈
ℂ) |
179 | 7, 178, 160 | fsummulc2 14854 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) = Σ𝑑 ∈ (1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥))) |
180 | 179 | oveq1d 6893 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) =
(Σ𝑑 ∈
(1...(⌊‘𝑥))(𝐶 · ((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1)))) |
181 | 177, 180 | breqtrrd 4871 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ≤ ((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1)))) |
182 | 41 | leabsd 14494 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝐶 · Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) + 1))) ≤
(abs‘((𝐶 ·
Σ𝑑 ∈
(1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1))))) |
183 | 61, 41, 63, 181, 182 | letrd 10484 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1))))) |
184 | 183 | adantrr 709 |
. 2
⊢ ((𝜑 ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤
𝑥)) →
(abs‘Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ≤ (abs‘((𝐶 · Σ𝑑 ∈ (1...(⌊‘𝑥))((log‘(𝑥 / 𝑑)) / 𝑥)) + (𝑅 · ((log‘3) +
1))))) |
185 | 1, 40, 41, 55, 184 | o1le 14724 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑑 ∈
(1...(⌊‘𝑥))((abs‘(𝐾 − 𝑇)) / 𝑑)) ∈ 𝑂(1)) |