![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashunlei | Structured version Visualization version GIF version |
Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
hashunlei.c | ⊢ 𝐶 = (𝐴 ∪ 𝐵) |
hashunlei.a | ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) |
hashunlei.b | ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) |
hashunlei.k | ⊢ 𝐾 ∈ ℕ0 |
hashunlei.m | ⊢ 𝑀 ∈ ℕ0 |
hashunlei.n | ⊢ (𝐾 + 𝑀) = 𝑁 |
Ref | Expression |
---|---|
hashunlei | ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashunlei.c | . . 3 ⊢ 𝐶 = (𝐴 ∪ 𝐵) | |
2 | hashunlei.a | . . . . 5 ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) | |
3 | 2 | simpli 483 | . . . 4 ⊢ 𝐴 ∈ Fin |
4 | hashunlei.b | . . . . 5 ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) | |
5 | 4 | simpli 483 | . . . 4 ⊢ 𝐵 ∈ Fin |
6 | unfi 9174 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
7 | 3, 5, 6 | mp2an 689 | . . 3 ⊢ (𝐴 ∪ 𝐵) ∈ Fin |
8 | 1, 7 | eqeltri 2823 | . 2 ⊢ 𝐶 ∈ Fin |
9 | 1 | fveq2i 6888 | . . . 4 ⊢ (♯‘𝐶) = (♯‘(𝐴 ∪ 𝐵)) |
10 | hashun2 14348 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
11 | 3, 5, 10 | mp2an 689 | . . . 4 ⊢ (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
12 | 9, 11 | eqbrtri 5162 | . . 3 ⊢ (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
13 | 2 | simpri 485 | . . . . 5 ⊢ (♯‘𝐴) ≤ 𝐾 |
14 | 4 | simpri 485 | . . . . 5 ⊢ (♯‘𝐵) ≤ 𝑀 |
15 | hashcl 14321 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
16 | 3, 15 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐴) ∈ ℕ0 |
17 | 16 | nn0rei 12487 | . . . . . 6 ⊢ (♯‘𝐴) ∈ ℝ |
18 | hashcl 14321 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
19 | 5, 18 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐵) ∈ ℕ0 |
20 | 19 | nn0rei 12487 | . . . . . 6 ⊢ (♯‘𝐵) ∈ ℝ |
21 | hashunlei.k | . . . . . . 7 ⊢ 𝐾 ∈ ℕ0 | |
22 | 21 | nn0rei 12487 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
23 | hashunlei.m | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
24 | 23 | nn0rei 12487 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
25 | 17, 20, 22, 24 | le2addi 11781 | . . . . 5 ⊢ (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)) |
26 | 13, 14, 25 | mp2an 689 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀) |
27 | hashunlei.n | . . . 4 ⊢ (𝐾 + 𝑀) = 𝑁 | |
28 | 26, 27 | breqtri 5166 | . . 3 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁 |
29 | hashcl 14321 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0) | |
30 | 8, 29 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐶) ∈ ℕ0 |
31 | 30 | nn0rei 12487 | . . . 4 ⊢ (♯‘𝐶) ∈ ℝ |
32 | 17, 20 | readdcli 11233 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ |
33 | 22, 24 | readdcli 11233 | . . . . 5 ⊢ (𝐾 + 𝑀) ∈ ℝ |
34 | 27, 33 | eqeltrri 2824 | . . . 4 ⊢ 𝑁 ∈ ℝ |
35 | 31, 32, 34 | letri 11347 | . . 3 ⊢ (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁) |
36 | 12, 28, 35 | mp2an 689 | . 2 ⊢ (♯‘𝐶) ≤ 𝑁 |
37 | 8, 36 | pm3.2i 470 | 1 ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∪ cun 3941 class class class wbr 5141 ‘cfv 6537 (class class class)co 7405 Fincfn 8941 ℝcr 11111 + caddc 11115 ≤ cle 11253 ℕ0cn0 12476 ♯chash 14295 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-oadd 8471 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-dju 9898 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 |
This theorem is referenced by: hashprlei 14435 hashtplei 14451 kur14lem8 34732 |
Copyright terms: Public domain | W3C validator |