| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashunlei | Structured version Visualization version GIF version | ||
| Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| hashunlei.c | ⊢ 𝐶 = (𝐴 ∪ 𝐵) |
| hashunlei.a | ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) |
| hashunlei.b | ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) |
| hashunlei.k | ⊢ 𝐾 ∈ ℕ0 |
| hashunlei.m | ⊢ 𝑀 ∈ ℕ0 |
| hashunlei.n | ⊢ (𝐾 + 𝑀) = 𝑁 |
| Ref | Expression |
|---|---|
| hashunlei | ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashunlei.c | . . 3 ⊢ 𝐶 = (𝐴 ∪ 𝐵) | |
| 2 | hashunlei.a | . . . . 5 ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) | |
| 3 | 2 | simpli 483 | . . . 4 ⊢ 𝐴 ∈ Fin |
| 4 | hashunlei.b | . . . . 5 ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) | |
| 5 | 4 | simpli 483 | . . . 4 ⊢ 𝐵 ∈ Fin |
| 6 | unfi 9085 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 7 | 3, 5, 6 | mp2an 692 | . . 3 ⊢ (𝐴 ∪ 𝐵) ∈ Fin |
| 8 | 1, 7 | eqeltri 2824 | . 2 ⊢ 𝐶 ∈ Fin |
| 9 | 1 | fveq2i 6825 | . . . 4 ⊢ (♯‘𝐶) = (♯‘(𝐴 ∪ 𝐵)) |
| 10 | hashun2 14290 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
| 11 | 3, 5, 10 | mp2an 692 | . . . 4 ⊢ (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
| 12 | 9, 11 | eqbrtri 5113 | . . 3 ⊢ (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
| 13 | 2 | simpri 485 | . . . . 5 ⊢ (♯‘𝐴) ≤ 𝐾 |
| 14 | 4 | simpri 485 | . . . . 5 ⊢ (♯‘𝐵) ≤ 𝑀 |
| 15 | hashcl 14263 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 16 | 3, 15 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐴) ∈ ℕ0 |
| 17 | 16 | nn0rei 12395 | . . . . . 6 ⊢ (♯‘𝐴) ∈ ℝ |
| 18 | hashcl 14263 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 19 | 5, 18 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐵) ∈ ℕ0 |
| 20 | 19 | nn0rei 12395 | . . . . . 6 ⊢ (♯‘𝐵) ∈ ℝ |
| 21 | hashunlei.k | . . . . . . 7 ⊢ 𝐾 ∈ ℕ0 | |
| 22 | 21 | nn0rei 12395 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
| 23 | hashunlei.m | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
| 24 | 23 | nn0rei 12395 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
| 25 | 17, 20, 22, 24 | le2addi 11683 | . . . . 5 ⊢ (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)) |
| 26 | 13, 14, 25 | mp2an 692 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀) |
| 27 | hashunlei.n | . . . 4 ⊢ (𝐾 + 𝑀) = 𝑁 | |
| 28 | 26, 27 | breqtri 5117 | . . 3 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁 |
| 29 | hashcl 14263 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0) | |
| 30 | 8, 29 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐶) ∈ ℕ0 |
| 31 | 30 | nn0rei 12395 | . . . 4 ⊢ (♯‘𝐶) ∈ ℝ |
| 32 | 17, 20 | readdcli 11130 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ |
| 33 | 22, 24 | readdcli 11130 | . . . . 5 ⊢ (𝐾 + 𝑀) ∈ ℝ |
| 34 | 27, 33 | eqeltrri 2825 | . . . 4 ⊢ 𝑁 ∈ ℝ |
| 35 | 31, 32, 34 | letri 11245 | . . 3 ⊢ (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁) |
| 36 | 12, 28, 35 | mp2an 692 | . 2 ⊢ (♯‘𝐶) ≤ 𝑁 |
| 37 | 8, 36 | pm3.2i 470 | 1 ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3901 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 ℝcr 11008 + caddc 11012 ≤ cle 11150 ℕ0cn0 12384 ♯chash 14237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-oadd 8392 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-dju 9797 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-xnn0 12458 df-z 12472 df-uz 12736 df-fz 13411 df-hash 14238 |
| This theorem is referenced by: hashprlei 14375 hashtplei 14391 kur14lem8 35190 |
| Copyright terms: Public domain | W3C validator |