MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunlei Structured version   Visualization version   GIF version

Theorem hashunlei 14460
Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
hashunlei.c 𝐶 = (𝐴𝐵)
hashunlei.a (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾)
hashunlei.b (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀)
hashunlei.k 𝐾 ∈ ℕ0
hashunlei.m 𝑀 ∈ ℕ0
hashunlei.n (𝐾 + 𝑀) = 𝑁
Assertion
Ref Expression
hashunlei (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁)

Proof of Theorem hashunlei
StepHypRef Expression
1 hashunlei.c . . 3 𝐶 = (𝐴𝐵)
2 hashunlei.a . . . . 5 (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾)
32simpli 483 . . . 4 𝐴 ∈ Fin
4 hashunlei.b . . . . 5 (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀)
54simpli 483 . . . 4 𝐵 ∈ Fin
6 unfi 9209 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
73, 5, 6mp2an 692 . . 3 (𝐴𝐵) ∈ Fin
81, 7eqeltri 2834 . 2 𝐶 ∈ Fin
91fveq2i 6909 . . . 4 (♯‘𝐶) = (♯‘(𝐴𝐵))
10 hashun2 14418 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)))
113, 5, 10mp2an 692 . . . 4 (♯‘(𝐴𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))
129, 11eqbrtri 5168 . . 3 (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵))
132simpri 485 . . . . 5 (♯‘𝐴) ≤ 𝐾
144simpri 485 . . . . 5 (♯‘𝐵) ≤ 𝑀
15 hashcl 14391 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
163, 15ax-mp 5 . . . . . . 7 (♯‘𝐴) ∈ ℕ0
1716nn0rei 12534 . . . . . 6 (♯‘𝐴) ∈ ℝ
18 hashcl 14391 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
195, 18ax-mp 5 . . . . . . 7 (♯‘𝐵) ∈ ℕ0
2019nn0rei 12534 . . . . . 6 (♯‘𝐵) ∈ ℝ
21 hashunlei.k . . . . . . 7 𝐾 ∈ ℕ0
2221nn0rei 12534 . . . . . 6 𝐾 ∈ ℝ
23 hashunlei.m . . . . . . 7 𝑀 ∈ ℕ0
2423nn0rei 12534 . . . . . 6 𝑀 ∈ ℝ
2517, 20, 22, 24le2addi 11823 . . . . 5 (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀))
2613, 14, 25mp2an 692 . . . 4 ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)
27 hashunlei.n . . . 4 (𝐾 + 𝑀) = 𝑁
2826, 27breqtri 5172 . . 3 ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁
29 hashcl 14391 . . . . . 6 (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0)
308, 29ax-mp 5 . . . . 5 (♯‘𝐶) ∈ ℕ0
3130nn0rei 12534 . . . 4 (♯‘𝐶) ∈ ℝ
3217, 20readdcli 11273 . . . 4 ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ
3322, 24readdcli 11273 . . . . 5 (𝐾 + 𝑀) ∈ ℝ
3427, 33eqeltrri 2835 . . . 4 𝑁 ∈ ℝ
3531, 32, 34letri 11387 . . 3 (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁)
3612, 28, 35mp2an 692 . 2 (♯‘𝐶) ≤ 𝑁
378, 36pm3.2i 470 1 (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1536  wcel 2105  cun 3960   class class class wbr 5147  cfv 6562  (class class class)co 7430  Fincfn 8983  cr 11151   + caddc 11155  cle 11293  0cn0 12523  chash 14365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-oadd 8508  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-dju 9938  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-xnn0 12597  df-z 12611  df-uz 12876  df-fz 13544  df-hash 14366
This theorem is referenced by:  hashprlei  14503  hashtplei  14519  kur14lem8  35197
  Copyright terms: Public domain W3C validator