| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashunlei | Structured version Visualization version GIF version | ||
| Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| hashunlei.c | ⊢ 𝐶 = (𝐴 ∪ 𝐵) |
| hashunlei.a | ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) |
| hashunlei.b | ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) |
| hashunlei.k | ⊢ 𝐾 ∈ ℕ0 |
| hashunlei.m | ⊢ 𝑀 ∈ ℕ0 |
| hashunlei.n | ⊢ (𝐾 + 𝑀) = 𝑁 |
| Ref | Expression |
|---|---|
| hashunlei | ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashunlei.c | . . 3 ⊢ 𝐶 = (𝐴 ∪ 𝐵) | |
| 2 | hashunlei.a | . . . . 5 ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) | |
| 3 | 2 | simpli 483 | . . . 4 ⊢ 𝐴 ∈ Fin |
| 4 | hashunlei.b | . . . . 5 ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) | |
| 5 | 4 | simpli 483 | . . . 4 ⊢ 𝐵 ∈ Fin |
| 6 | unfi 9135 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 7 | 3, 5, 6 | mp2an 692 | . . 3 ⊢ (𝐴 ∪ 𝐵) ∈ Fin |
| 8 | 1, 7 | eqeltri 2824 | . 2 ⊢ 𝐶 ∈ Fin |
| 9 | 1 | fveq2i 6861 | . . . 4 ⊢ (♯‘𝐶) = (♯‘(𝐴 ∪ 𝐵)) |
| 10 | hashun2 14348 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
| 11 | 3, 5, 10 | mp2an 692 | . . . 4 ⊢ (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
| 12 | 9, 11 | eqbrtri 5128 | . . 3 ⊢ (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
| 13 | 2 | simpri 485 | . . . . 5 ⊢ (♯‘𝐴) ≤ 𝐾 |
| 14 | 4 | simpri 485 | . . . . 5 ⊢ (♯‘𝐵) ≤ 𝑀 |
| 15 | hashcl 14321 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 16 | 3, 15 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐴) ∈ ℕ0 |
| 17 | 16 | nn0rei 12453 | . . . . . 6 ⊢ (♯‘𝐴) ∈ ℝ |
| 18 | hashcl 14321 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 19 | 5, 18 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐵) ∈ ℕ0 |
| 20 | 19 | nn0rei 12453 | . . . . . 6 ⊢ (♯‘𝐵) ∈ ℝ |
| 21 | hashunlei.k | . . . . . . 7 ⊢ 𝐾 ∈ ℕ0 | |
| 22 | 21 | nn0rei 12453 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
| 23 | hashunlei.m | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
| 24 | 23 | nn0rei 12453 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
| 25 | 17, 20, 22, 24 | le2addi 11741 | . . . . 5 ⊢ (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)) |
| 26 | 13, 14, 25 | mp2an 692 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀) |
| 27 | hashunlei.n | . . . 4 ⊢ (𝐾 + 𝑀) = 𝑁 | |
| 28 | 26, 27 | breqtri 5132 | . . 3 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁 |
| 29 | hashcl 14321 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0) | |
| 30 | 8, 29 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐶) ∈ ℕ0 |
| 31 | 30 | nn0rei 12453 | . . . 4 ⊢ (♯‘𝐶) ∈ ℝ |
| 32 | 17, 20 | readdcli 11189 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ |
| 33 | 22, 24 | readdcli 11189 | . . . . 5 ⊢ (𝐾 + 𝑀) ∈ ℝ |
| 34 | 27, 33 | eqeltrri 2825 | . . . 4 ⊢ 𝑁 ∈ ℝ |
| 35 | 31, 32, 34 | letri 11303 | . . 3 ⊢ (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁) |
| 36 | 12, 28, 35 | mp2an 692 | . 2 ⊢ (♯‘𝐶) ≤ 𝑁 |
| 37 | 8, 36 | pm3.2i 470 | 1 ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∪ cun 3912 class class class wbr 5107 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 ℝcr 11067 + caddc 11071 ≤ cle 11209 ℕ0cn0 12442 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-oadd 8438 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-dju 9854 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 |
| This theorem is referenced by: hashprlei 14433 hashtplei 14449 kur14lem8 35200 |
| Copyright terms: Public domain | W3C validator |