| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hashunlei | Structured version Visualization version GIF version | ||
| Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| hashunlei.c | ⊢ 𝐶 = (𝐴 ∪ 𝐵) |
| hashunlei.a | ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) |
| hashunlei.b | ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) |
| hashunlei.k | ⊢ 𝐾 ∈ ℕ0 |
| hashunlei.m | ⊢ 𝑀 ∈ ℕ0 |
| hashunlei.n | ⊢ (𝐾 + 𝑀) = 𝑁 |
| Ref | Expression |
|---|---|
| hashunlei | ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashunlei.c | . . 3 ⊢ 𝐶 = (𝐴 ∪ 𝐵) | |
| 2 | hashunlei.a | . . . . 5 ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) | |
| 3 | 2 | simpli 483 | . . . 4 ⊢ 𝐴 ∈ Fin |
| 4 | hashunlei.b | . . . . 5 ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) | |
| 5 | 4 | simpli 483 | . . . 4 ⊢ 𝐵 ∈ Fin |
| 6 | unfi 9185 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
| 7 | 3, 5, 6 | mp2an 692 | . . 3 ⊢ (𝐴 ∪ 𝐵) ∈ Fin |
| 8 | 1, 7 | eqeltri 2830 | . 2 ⊢ 𝐶 ∈ Fin |
| 9 | 1 | fveq2i 6879 | . . . 4 ⊢ (♯‘𝐶) = (♯‘(𝐴 ∪ 𝐵)) |
| 10 | hashun2 14401 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
| 11 | 3, 5, 10 | mp2an 692 | . . . 4 ⊢ (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
| 12 | 9, 11 | eqbrtri 5140 | . . 3 ⊢ (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
| 13 | 2 | simpri 485 | . . . . 5 ⊢ (♯‘𝐴) ≤ 𝐾 |
| 14 | 4 | simpri 485 | . . . . 5 ⊢ (♯‘𝐵) ≤ 𝑀 |
| 15 | hashcl 14374 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
| 16 | 3, 15 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐴) ∈ ℕ0 |
| 17 | 16 | nn0rei 12512 | . . . . . 6 ⊢ (♯‘𝐴) ∈ ℝ |
| 18 | hashcl 14374 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
| 19 | 5, 18 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐵) ∈ ℕ0 |
| 20 | 19 | nn0rei 12512 | . . . . . 6 ⊢ (♯‘𝐵) ∈ ℝ |
| 21 | hashunlei.k | . . . . . . 7 ⊢ 𝐾 ∈ ℕ0 | |
| 22 | 21 | nn0rei 12512 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
| 23 | hashunlei.m | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
| 24 | 23 | nn0rei 12512 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
| 25 | 17, 20, 22, 24 | le2addi 11800 | . . . . 5 ⊢ (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)) |
| 26 | 13, 14, 25 | mp2an 692 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀) |
| 27 | hashunlei.n | . . . 4 ⊢ (𝐾 + 𝑀) = 𝑁 | |
| 28 | 26, 27 | breqtri 5144 | . . 3 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁 |
| 29 | hashcl 14374 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0) | |
| 30 | 8, 29 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐶) ∈ ℕ0 |
| 31 | 30 | nn0rei 12512 | . . . 4 ⊢ (♯‘𝐶) ∈ ℝ |
| 32 | 17, 20 | readdcli 11250 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ |
| 33 | 22, 24 | readdcli 11250 | . . . . 5 ⊢ (𝐾 + 𝑀) ∈ ℝ |
| 34 | 27, 33 | eqeltrri 2831 | . . . 4 ⊢ 𝑁 ∈ ℝ |
| 35 | 31, 32, 34 | letri 11364 | . . 3 ⊢ (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁) |
| 36 | 12, 28, 35 | mp2an 692 | . 2 ⊢ (♯‘𝐶) ≤ 𝑁 |
| 37 | 8, 36 | pm3.2i 470 | 1 ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∪ cun 3924 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 ℝcr 11128 + caddc 11132 ≤ cle 11270 ℕ0cn0 12501 ♯chash 14348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-oadd 8484 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 |
| This theorem is referenced by: hashprlei 14486 hashtplei 14502 kur14lem8 35235 |
| Copyright terms: Public domain | W3C validator |