![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashunlei | Structured version Visualization version GIF version |
Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
hashunlei.c | ⊢ 𝐶 = (𝐴 ∪ 𝐵) |
hashunlei.a | ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) |
hashunlei.b | ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) |
hashunlei.k | ⊢ 𝐾 ∈ ℕ0 |
hashunlei.m | ⊢ 𝑀 ∈ ℕ0 |
hashunlei.n | ⊢ (𝐾 + 𝑀) = 𝑁 |
Ref | Expression |
---|---|
hashunlei | ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashunlei.c | . . 3 ⊢ 𝐶 = (𝐴 ∪ 𝐵) | |
2 | hashunlei.a | . . . . 5 ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) | |
3 | 2 | simpli 483 | . . . 4 ⊢ 𝐴 ∈ Fin |
4 | hashunlei.b | . . . . 5 ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) | |
5 | 4 | simpli 483 | . . . 4 ⊢ 𝐵 ∈ Fin |
6 | unfi 9238 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
7 | 3, 5, 6 | mp2an 691 | . . 3 ⊢ (𝐴 ∪ 𝐵) ∈ Fin |
8 | 1, 7 | eqeltri 2840 | . 2 ⊢ 𝐶 ∈ Fin |
9 | 1 | fveq2i 6923 | . . . 4 ⊢ (♯‘𝐶) = (♯‘(𝐴 ∪ 𝐵)) |
10 | hashun2 14432 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
11 | 3, 5, 10 | mp2an 691 | . . . 4 ⊢ (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
12 | 9, 11 | eqbrtri 5187 | . . 3 ⊢ (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
13 | 2 | simpri 485 | . . . . 5 ⊢ (♯‘𝐴) ≤ 𝐾 |
14 | 4 | simpri 485 | . . . . 5 ⊢ (♯‘𝐵) ≤ 𝑀 |
15 | hashcl 14405 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
16 | 3, 15 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐴) ∈ ℕ0 |
17 | 16 | nn0rei 12564 | . . . . . 6 ⊢ (♯‘𝐴) ∈ ℝ |
18 | hashcl 14405 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
19 | 5, 18 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐵) ∈ ℕ0 |
20 | 19 | nn0rei 12564 | . . . . . 6 ⊢ (♯‘𝐵) ∈ ℝ |
21 | hashunlei.k | . . . . . . 7 ⊢ 𝐾 ∈ ℕ0 | |
22 | 21 | nn0rei 12564 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
23 | hashunlei.m | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
24 | 23 | nn0rei 12564 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
25 | 17, 20, 22, 24 | le2addi 11853 | . . . . 5 ⊢ (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)) |
26 | 13, 14, 25 | mp2an 691 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀) |
27 | hashunlei.n | . . . 4 ⊢ (𝐾 + 𝑀) = 𝑁 | |
28 | 26, 27 | breqtri 5191 | . . 3 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁 |
29 | hashcl 14405 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0) | |
30 | 8, 29 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐶) ∈ ℕ0 |
31 | 30 | nn0rei 12564 | . . . 4 ⊢ (♯‘𝐶) ∈ ℝ |
32 | 17, 20 | readdcli 11305 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ |
33 | 22, 24 | readdcli 11305 | . . . . 5 ⊢ (𝐾 + 𝑀) ∈ ℝ |
34 | 27, 33 | eqeltrri 2841 | . . . 4 ⊢ 𝑁 ∈ ℝ |
35 | 31, 32, 34 | letri 11419 | . . 3 ⊢ (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁) |
36 | 12, 28, 35 | mp2an 691 | . 2 ⊢ (♯‘𝐶) ≤ 𝑁 |
37 | 8, 36 | pm3.2i 470 | 1 ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Fincfn 9003 ℝcr 11183 + caddc 11187 ≤ cle 11325 ℕ0cn0 12553 ♯chash 14379 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-fz 13568 df-hash 14380 |
This theorem is referenced by: hashprlei 14517 hashtplei 14533 kur14lem8 35181 |
Copyright terms: Public domain | W3C validator |