MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunlei Structured version   Visualization version   GIF version

Theorem hashunlei 14366
Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
hashunlei.c 𝐶 = (𝐴𝐵)
hashunlei.a (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾)
hashunlei.b (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀)
hashunlei.k 𝐾 ∈ ℕ0
hashunlei.m 𝑀 ∈ ℕ0
hashunlei.n (𝐾 + 𝑀) = 𝑁
Assertion
Ref Expression
hashunlei (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁)

Proof of Theorem hashunlei
StepHypRef Expression
1 hashunlei.c . . 3 𝐶 = (𝐴𝐵)
2 hashunlei.a . . . . 5 (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾)
32simpli 483 . . . 4 𝐴 ∈ Fin
4 hashunlei.b . . . . 5 (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀)
54simpli 483 . . . 4 𝐵 ∈ Fin
6 unfi 9112 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
73, 5, 6mp2an 692 . . 3 (𝐴𝐵) ∈ Fin
81, 7eqeltri 2824 . 2 𝐶 ∈ Fin
91fveq2i 6843 . . . 4 (♯‘𝐶) = (♯‘(𝐴𝐵))
10 hashun2 14324 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)))
113, 5, 10mp2an 692 . . . 4 (♯‘(𝐴𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))
129, 11eqbrtri 5123 . . 3 (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵))
132simpri 485 . . . . 5 (♯‘𝐴) ≤ 𝐾
144simpri 485 . . . . 5 (♯‘𝐵) ≤ 𝑀
15 hashcl 14297 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
163, 15ax-mp 5 . . . . . . 7 (♯‘𝐴) ∈ ℕ0
1716nn0rei 12429 . . . . . 6 (♯‘𝐴) ∈ ℝ
18 hashcl 14297 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
195, 18ax-mp 5 . . . . . . 7 (♯‘𝐵) ∈ ℕ0
2019nn0rei 12429 . . . . . 6 (♯‘𝐵) ∈ ℝ
21 hashunlei.k . . . . . . 7 𝐾 ∈ ℕ0
2221nn0rei 12429 . . . . . 6 𝐾 ∈ ℝ
23 hashunlei.m . . . . . . 7 𝑀 ∈ ℕ0
2423nn0rei 12429 . . . . . 6 𝑀 ∈ ℝ
2517, 20, 22, 24le2addi 11717 . . . . 5 (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀))
2613, 14, 25mp2an 692 . . . 4 ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)
27 hashunlei.n . . . 4 (𝐾 + 𝑀) = 𝑁
2826, 27breqtri 5127 . . 3 ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁
29 hashcl 14297 . . . . . 6 (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0)
308, 29ax-mp 5 . . . . 5 (♯‘𝐶) ∈ ℕ0
3130nn0rei 12429 . . . 4 (♯‘𝐶) ∈ ℝ
3217, 20readdcli 11165 . . . 4 ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ
3322, 24readdcli 11165 . . . . 5 (𝐾 + 𝑀) ∈ ℝ
3427, 33eqeltrri 2825 . . . 4 𝑁 ∈ ℝ
3531, 32, 34letri 11279 . . 3 (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁)
3612, 28, 35mp2an 692 . 2 (♯‘𝐶) ≤ 𝑁
378, 36pm3.2i 470 1 (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  cun 3909   class class class wbr 5102  cfv 6499  (class class class)co 7369  Fincfn 8895  cr 11043   + caddc 11047  cle 11185  0cn0 12418  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  hashprlei  14409  hashtplei  14425  kur14lem8  35173
  Copyright terms: Public domain W3C validator