Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0opthlem2 | Structured version Visualization version GIF version |
Description: Lemma for nn0opthi 13984. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.) |
Ref | Expression |
---|---|
nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 |
nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 |
nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 |
nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0opthlem2 | ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opth.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
2 | nn0opth.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
3 | 1, 2 | nn0addcli 12270 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℕ0 |
4 | nn0opth.3 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
5 | 3, 4 | nn0opthlem1 13982 | . . 3 ⊢ ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) |
6 | 2 | nn0rei 12244 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
7 | 6, 1 | nn0addge2i 12282 | . . . . 5 ⊢ 𝐵 ≤ (𝐴 + 𝐵) |
8 | 3, 2 | nn0lele2xi 12288 | . . . . . 6 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → 𝐵 ≤ (2 · (𝐴 + 𝐵))) |
9 | 2re 12047 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
10 | 3 | nn0rei 12244 | . . . . . . . 8 ⊢ (𝐴 + 𝐵) ∈ ℝ |
11 | 9, 10 | remulcli 10991 | . . . . . . 7 ⊢ (2 · (𝐴 + 𝐵)) ∈ ℝ |
12 | 10, 10 | remulcli 10991 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ |
13 | 6, 11, 12 | leadd2i 11531 | . . . . . 6 ⊢ (𝐵 ≤ (2 · (𝐴 + 𝐵)) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
14 | 8, 13 | sylib 217 | . . . . 5 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
15 | 7, 14 | ax-mp 5 | . . . 4 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) |
16 | 12, 6 | readdcli 10990 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ |
17 | 12, 11 | readdcli 10990 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ |
18 | 4 | nn0rei 12244 | . . . . . 6 ⊢ 𝐶 ∈ ℝ |
19 | 18, 18 | remulcli 10991 | . . . . 5 ⊢ (𝐶 · 𝐶) ∈ ℝ |
20 | 16, 17, 19 | lelttri 11102 | . . . 4 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
21 | 15, 20 | mpan 687 | . . 3 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
22 | 5, 21 | sylbi 216 | . 2 ⊢ ((𝐴 + 𝐵) < 𝐶 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
23 | nn0opth.4 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
24 | 19, 23 | nn0addge1i 12281 | . . 3 ⊢ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷) |
25 | 23 | nn0rei 12244 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
26 | 19, 25 | readdcli 10990 | . . . 4 ⊢ ((𝐶 · 𝐶) + 𝐷) ∈ ℝ |
27 | 16, 19, 26 | ltletri 11103 | . . 3 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) ∧ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
28 | 24, 27 | mpan2 688 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
29 | 16, 26 | ltnei 11099 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
30 | 22, 28, 29 | 3syl 18 | 1 ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 (class class class)co 7275 + caddc 10874 · cmul 10876 < clt 11009 ≤ cle 11010 2c2 12028 ℕ0cn0 12233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-seq 13722 df-exp 13783 |
This theorem is referenced by: nn0opthi 13984 |
Copyright terms: Public domain | W3C validator |