MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthlem2 Structured version   Visualization version   GIF version

Theorem nn0opthlem2 13818
Description: Lemma for nn0opthi 13819. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.)
Hypotheses
Ref Expression
nn0opth.1 𝐴 ∈ ℕ0
nn0opth.2 𝐵 ∈ ℕ0
nn0opth.3 𝐶 ∈ ℕ0
nn0opth.4 𝐷 ∈ ℕ0
Assertion
Ref Expression
nn0opthlem2 ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))

Proof of Theorem nn0opthlem2
StepHypRef Expression
1 nn0opth.1 . . . . 5 𝐴 ∈ ℕ0
2 nn0opth.2 . . . . 5 𝐵 ∈ ℕ0
31, 2nn0addcli 12110 . . . 4 (𝐴 + 𝐵) ∈ ℕ0
4 nn0opth.3 . . . 4 𝐶 ∈ ℕ0
53, 4nn0opthlem1 13817 . . 3 ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶))
62nn0rei 12084 . . . . . 6 𝐵 ∈ ℝ
76, 1nn0addge2i 12122 . . . . 5 𝐵 ≤ (𝐴 + 𝐵)
83, 2nn0lele2xi 12128 . . . . . 6 (𝐵 ≤ (𝐴 + 𝐵) → 𝐵 ≤ (2 · (𝐴 + 𝐵)))
9 2re 11887 . . . . . . . 8 2 ∈ ℝ
103nn0rei 12084 . . . . . . . 8 (𝐴 + 𝐵) ∈ ℝ
119, 10remulcli 10832 . . . . . . 7 (2 · (𝐴 + 𝐵)) ∈ ℝ
1210, 10remulcli 10832 . . . . . . 7 ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ
136, 11, 12leadd2i 11371 . . . . . 6 (𝐵 ≤ (2 · (𝐴 + 𝐵)) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
148, 13sylib 221 . . . . 5 (𝐵 ≤ (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))))
157, 14ax-mp 5 . . . 4 (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))
1612, 6readdcli 10831 . . . . 5 (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ
1712, 11readdcli 10831 . . . . 5 (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ
184nn0rei 12084 . . . . . 6 𝐶 ∈ ℝ
1918, 18remulcli 10832 . . . . 5 (𝐶 · 𝐶) ∈ ℝ
2016, 17, 19lelttri 10942 . . . 4 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
2115, 20mpan 690 . . 3 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
225, 21sylbi 220 . 2 ((𝐴 + 𝐵) < 𝐶 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶))
23 nn0opth.4 . . . 4 𝐷 ∈ ℕ0
2419, 23nn0addge1i 12121 . . 3 (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)
2523nn0rei 12084 . . . . 5 𝐷 ∈ ℝ
2619, 25readdcli 10831 . . . 4 ((𝐶 · 𝐶) + 𝐷) ∈ ℝ
2716, 19, 26ltletri 10943 . . 3 (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) ∧ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
2824, 27mpan2 691 . 2 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷))
2916, 26ltnei 10939 . 2 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
3022, 28, 293syl 18 1 ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  wne 2935   class class class wbr 5043  (class class class)co 7202   + caddc 10715   · cmul 10717   < clt 10850  cle 10851  2c2 11868  0cn0 12073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-z 12160  df-uz 12422  df-seq 13558  df-exp 13619
This theorem is referenced by:  nn0opthi  13819
  Copyright terms: Public domain W3C validator