![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nn0opthlem2 | Structured version Visualization version GIF version |
Description: Lemma for nn0opthi 13443. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.) |
Ref | Expression |
---|---|
nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 |
nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 |
nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 |
nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 |
Ref | Expression |
---|---|
nn0opthlem2 | ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0opth.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
2 | nn0opth.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
3 | 1, 2 | nn0addcli 11744 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℕ0 |
4 | nn0opth.3 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
5 | 3, 4 | nn0opthlem1 13441 | . . 3 ⊢ ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) |
6 | 2 | nn0rei 11717 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
7 | 6, 1 | nn0addge2i 11756 | . . . . 5 ⊢ 𝐵 ≤ (𝐴 + 𝐵) |
8 | 3, 2 | nn0lele2xi 11762 | . . . . . 6 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → 𝐵 ≤ (2 · (𝐴 + 𝐵))) |
9 | 2re 11512 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
10 | 3 | nn0rei 11717 | . . . . . . . 8 ⊢ (𝐴 + 𝐵) ∈ ℝ |
11 | 9, 10 | remulcli 10454 | . . . . . . 7 ⊢ (2 · (𝐴 + 𝐵)) ∈ ℝ |
12 | 10, 10 | remulcli 10454 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ |
13 | 6, 11, 12 | leadd2i 10995 | . . . . . 6 ⊢ (𝐵 ≤ (2 · (𝐴 + 𝐵)) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
14 | 8, 13 | sylib 210 | . . . . 5 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
15 | 7, 14 | ax-mp 5 | . . . 4 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) |
16 | 12, 6 | readdcli 10453 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ |
17 | 12, 11 | readdcli 10453 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ |
18 | 4 | nn0rei 11717 | . . . . . 6 ⊢ 𝐶 ∈ ℝ |
19 | 18, 18 | remulcli 10454 | . . . . 5 ⊢ (𝐶 · 𝐶) ∈ ℝ |
20 | 16, 17, 19 | lelttri 10565 | . . . 4 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
21 | 15, 20 | mpan 678 | . . 3 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
22 | 5, 21 | sylbi 209 | . 2 ⊢ ((𝐴 + 𝐵) < 𝐶 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
23 | nn0opth.4 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
24 | 19, 23 | nn0addge1i 11755 | . . 3 ⊢ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷) |
25 | 23 | nn0rei 11717 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
26 | 19, 25 | readdcli 10453 | . . . 4 ⊢ ((𝐶 · 𝐶) + 𝐷) ∈ ℝ |
27 | 16, 19, 26 | ltletri 10566 | . . 3 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) ∧ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
28 | 24, 27 | mpan2 679 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
29 | 16, 26 | ltnei 10562 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
30 | 22, 28, 29 | 3syl 18 | 1 ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2051 ≠ wne 2960 class class class wbr 4925 (class class class)co 6974 + caddc 10336 · cmul 10338 < clt 10472 ≤ cle 10473 2c2 11493 ℕ0cn0 11705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-resscn 10390 ax-1cn 10391 ax-icn 10392 ax-addcl 10393 ax-addrcl 10394 ax-mulcl 10395 ax-mulrcl 10396 ax-mulcom 10397 ax-addass 10398 ax-mulass 10399 ax-distr 10400 ax-i2m1 10401 ax-1ne0 10402 ax-1rid 10403 ax-rnegex 10404 ax-rrecex 10405 ax-cnre 10406 ax-pre-lttri 10407 ax-pre-lttrn 10408 ax-pre-ltadd 10409 ax-pre-mulgt0 10410 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-nel 3067 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-riota 6935 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-2nd 7500 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-er 8087 df-en 8305 df-dom 8306 df-sdom 8307 df-pnf 10474 df-mnf 10475 df-xr 10476 df-ltxr 10477 df-le 10478 df-sub 10670 df-neg 10671 df-nn 11438 df-2 11501 df-n0 11706 df-z 11792 df-uz 12057 df-seq 13183 df-exp 13243 |
This theorem is referenced by: nn0opthi 13443 |
Copyright terms: Public domain | W3C validator |