| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0opthlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for nn0opthi 14177. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.) |
| Ref | Expression |
|---|---|
| nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 |
| nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 |
| nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 |
| nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0opthlem2 | ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | nn0opth.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 1, 2 | nn0addcli 12421 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℕ0 |
| 4 | nn0opth.3 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 3, 4 | nn0opthlem1 14175 | . . 3 ⊢ ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) |
| 6 | 2 | nn0rei 12395 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 7 | 6, 1 | nn0addge2i 12433 | . . . . 5 ⊢ 𝐵 ≤ (𝐴 + 𝐵) |
| 8 | 3, 2 | nn0lele2xi 12440 | . . . . . 6 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → 𝐵 ≤ (2 · (𝐴 + 𝐵))) |
| 9 | 2re 12202 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 10 | 3 | nn0rei 12395 | . . . . . . . 8 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| 11 | 9, 10 | remulcli 11131 | . . . . . . 7 ⊢ (2 · (𝐴 + 𝐵)) ∈ ℝ |
| 12 | 10, 10 | remulcli 11131 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ |
| 13 | 6, 11, 12 | leadd2i 11676 | . . . . . 6 ⊢ (𝐵 ≤ (2 · (𝐴 + 𝐵)) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
| 14 | 8, 13 | sylib 218 | . . . . 5 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
| 15 | 7, 14 | ax-mp 5 | . . . 4 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) |
| 16 | 12, 6 | readdcli 11130 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ |
| 17 | 12, 11 | readdcli 11130 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ |
| 18 | 4 | nn0rei 12395 | . . . . . 6 ⊢ 𝐶 ∈ ℝ |
| 19 | 18, 18 | remulcli 11131 | . . . . 5 ⊢ (𝐶 · 𝐶) ∈ ℝ |
| 20 | 16, 17, 19 | lelttri 11243 | . . . 4 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
| 21 | 15, 20 | mpan 690 | . . 3 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
| 22 | 5, 21 | sylbi 217 | . 2 ⊢ ((𝐴 + 𝐵) < 𝐶 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
| 23 | nn0opth.4 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
| 24 | 19, 23 | nn0addge1i 12432 | . . 3 ⊢ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷) |
| 25 | 23 | nn0rei 12395 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
| 26 | 19, 25 | readdcli 11130 | . . . 4 ⊢ ((𝐶 · 𝐶) + 𝐷) ∈ ℝ |
| 27 | 16, 19, 26 | ltletri 11244 | . . 3 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) ∧ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
| 28 | 24, 27 | mpan2 691 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
| 29 | 16, 26 | ltnei 11240 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
| 30 | 22, 28, 29 | 3syl 18 | 1 ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5092 (class class class)co 7349 + caddc 11012 · cmul 11014 < clt 11149 ≤ cle 11150 2c2 12183 ℕ0cn0 12384 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: nn0opthi 14177 |
| Copyright terms: Public domain | W3C validator |