| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0opthlem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for nn0opthi 14177. (Contributed by Raph Levien, 10-Dec-2002.) (Revised by Scott Fenton, 8-Sep-2010.) |
| Ref | Expression |
|---|---|
| nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 |
| nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 |
| nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 |
| nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0opthlem2 | ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | . . . . 5 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | nn0opth.2 | . . . . 5 ⊢ 𝐵 ∈ ℕ0 | |
| 3 | 1, 2 | nn0addcli 12418 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℕ0 |
| 4 | nn0opth.3 | . . . 4 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 3, 4 | nn0opthlem1 14175 | . . 3 ⊢ ((𝐴 + 𝐵) < 𝐶 ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) |
| 6 | 2 | nn0rei 12392 | . . . . . 6 ⊢ 𝐵 ∈ ℝ |
| 7 | 6, 1 | nn0addge2i 12430 | . . . . 5 ⊢ 𝐵 ≤ (𝐴 + 𝐵) |
| 8 | 3, 2 | nn0lele2xi 12437 | . . . . . 6 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → 𝐵 ≤ (2 · (𝐴 + 𝐵))) |
| 9 | 2re 12199 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 10 | 3 | nn0rei 12392 | . . . . . . . 8 ⊢ (𝐴 + 𝐵) ∈ ℝ |
| 11 | 9, 10 | remulcli 11128 | . . . . . . 7 ⊢ (2 · (𝐴 + 𝐵)) ∈ ℝ |
| 12 | 10, 10 | remulcli 11128 | . . . . . . 7 ⊢ ((𝐴 + 𝐵) · (𝐴 + 𝐵)) ∈ ℝ |
| 13 | 6, 11, 12 | leadd2i 11673 | . . . . . 6 ⊢ (𝐵 ≤ (2 · (𝐴 + 𝐵)) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
| 14 | 8, 13 | sylib 218 | . . . . 5 ⊢ (𝐵 ≤ (𝐴 + 𝐵) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵)))) |
| 15 | 7, 14 | ax-mp 5 | . . . 4 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) |
| 16 | 12, 6 | readdcli 11127 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ∈ ℝ |
| 17 | 12, 11 | readdcli 11127 | . . . . 5 ⊢ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∈ ℝ |
| 18 | 4 | nn0rei 12392 | . . . . . 6 ⊢ 𝐶 ∈ ℝ |
| 19 | 18, 18 | remulcli 11128 | . . . . 5 ⊢ (𝐶 · 𝐶) ∈ ℝ |
| 20 | 16, 17, 19 | lelttri 11240 | . . . 4 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) ≤ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) ∧ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
| 21 | 15, 20 | mpan 690 | . . 3 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + (2 · (𝐴 + 𝐵))) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
| 22 | 5, 21 | sylbi 217 | . 2 ⊢ ((𝐴 + 𝐵) < 𝐶 → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶)) |
| 23 | nn0opth.4 | . . . 4 ⊢ 𝐷 ∈ ℕ0 | |
| 24 | 19, 23 | nn0addge1i 12429 | . . 3 ⊢ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷) |
| 25 | 23 | nn0rei 12392 | . . . . 5 ⊢ 𝐷 ∈ ℝ |
| 26 | 19, 25 | readdcli 11127 | . . . 4 ⊢ ((𝐶 · 𝐶) + 𝐷) ∈ ℝ |
| 27 | 16, 19, 26 | ltletri 11241 | . . 3 ⊢ (((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) ∧ (𝐶 · 𝐶) ≤ ((𝐶 · 𝐶) + 𝐷)) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
| 28 | 24, 27 | mpan2 691 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < (𝐶 · 𝐶) → (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷)) |
| 29 | 16, 26 | ltnei 11237 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) < ((𝐶 · 𝐶) + 𝐷) → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
| 30 | 22, 28, 29 | 3syl 18 | 1 ⊢ ((𝐴 + 𝐵) < 𝐶 → ((𝐶 · 𝐶) + 𝐷) ≠ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5089 (class class class)co 7346 + caddc 11009 · cmul 11011 < clt 11146 ≤ cle 11147 2c2 12180 ℕ0cn0 12381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: nn0opthi 14177 |
| Copyright terms: Public domain | W3C validator |