Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > abs3lemi | Structured version Visualization version GIF version |
Description: Lemma involving absolute value of differences. (Contributed by NM, 2-Oct-1999.) |
Ref | Expression |
---|---|
absvalsqi.1 | ⊢ 𝐴 ∈ ℂ |
abssub.2 | ⊢ 𝐵 ∈ ℂ |
abs3dif.3 | ⊢ 𝐶 ∈ ℂ |
abs3lem.4 | ⊢ 𝐷 ∈ ℝ |
Ref | Expression |
---|---|
abs3lemi | ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absvalsqi.1 | . . . 4 ⊢ 𝐴 ∈ ℂ | |
2 | abssub.2 | . . . 4 ⊢ 𝐵 ∈ ℂ | |
3 | abs3dif.3 | . . . 4 ⊢ 𝐶 ∈ ℂ | |
4 | 1, 2, 3 | abs3difi 14822 | . . 3 ⊢ (abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) |
5 | 1, 3 | subcli 11005 | . . . . 5 ⊢ (𝐴 − 𝐶) ∈ ℂ |
6 | 5 | abscli 14808 | . . . 4 ⊢ (abs‘(𝐴 − 𝐶)) ∈ ℝ |
7 | 3, 2 | subcli 11005 | . . . . 5 ⊢ (𝐶 − 𝐵) ∈ ℂ |
8 | 7 | abscli 14808 | . . . 4 ⊢ (abs‘(𝐶 − 𝐵)) ∈ ℝ |
9 | abs3lem.4 | . . . . 5 ⊢ 𝐷 ∈ ℝ | |
10 | 9 | rehalfcli 11928 | . . . 4 ⊢ (𝐷 / 2) ∈ ℝ |
11 | 6, 8, 10, 10 | lt2addi 11245 | . . 3 ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) |
12 | 1, 2 | subcli 11005 | . . . . 5 ⊢ (𝐴 − 𝐵) ∈ ℂ |
13 | 12 | abscli 14808 | . . . 4 ⊢ (abs‘(𝐴 − 𝐵)) ∈ ℝ |
14 | 6, 8 | readdcli 10699 | . . . 4 ⊢ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) ∈ ℝ |
15 | 10, 10 | readdcli 10699 | . . . 4 ⊢ ((𝐷 / 2) + (𝐷 / 2)) ∈ ℝ |
16 | 13, 14, 15 | lelttri 10810 | . . 3 ⊢ (((abs‘(𝐴 − 𝐵)) ≤ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) ∧ ((abs‘(𝐴 − 𝐶)) + (abs‘(𝐶 − 𝐵))) < ((𝐷 / 2) + (𝐷 / 2))) → (abs‘(𝐴 − 𝐵)) < ((𝐷 / 2) + (𝐷 / 2))) |
17 | 4, 11, 16 | sylancr 590 | . 2 ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < ((𝐷 / 2) + (𝐷 / 2))) |
18 | 10 | recni 10698 | . . . 4 ⊢ (𝐷 / 2) ∈ ℂ |
19 | 18 | 2timesi 11817 | . . 3 ⊢ (2 · (𝐷 / 2)) = ((𝐷 / 2) + (𝐷 / 2)) |
20 | 9 | recni 10698 | . . . 4 ⊢ 𝐷 ∈ ℂ |
21 | 2cn 11754 | . . . 4 ⊢ 2 ∈ ℂ | |
22 | 2ne0 11783 | . . . 4 ⊢ 2 ≠ 0 | |
23 | 20, 21, 22 | divcan2i 11426 | . . 3 ⊢ (2 · (𝐷 / 2)) = 𝐷 |
24 | 19, 23 | eqtr3i 2783 | . 2 ⊢ ((𝐷 / 2) + (𝐷 / 2)) = 𝐷 |
25 | 17, 24 | breqtrdi 5076 | 1 ⊢ (((abs‘(𝐴 − 𝐶)) < (𝐷 / 2) ∧ (abs‘(𝐶 − 𝐵)) < (𝐷 / 2)) → (abs‘(𝐴 − 𝐵)) < 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∈ wcel 2111 class class class wbr 5035 ‘cfv 6339 (class class class)co 7155 ℂcc 10578 ℝcr 10579 + caddc 10583 · cmul 10585 < clt 10718 ≤ cle 10719 − cmin 10913 / cdiv 11340 2c2 11734 abscabs 14646 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 ax-pre-sup 10658 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-2nd 7699 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-sup 8944 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-nn 11680 df-2 11742 df-3 11743 df-n0 11940 df-z 12026 df-uz 12288 df-rp 12436 df-seq 13424 df-exp 13485 df-cj 14511 df-re 14512 df-im 14513 df-sqrt 14647 df-abs 14648 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |