| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version | ||
| Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| 10re | ⊢ ;10 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12589 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
| 2 | 9re 12224 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 3 | 1re 11112 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11127 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
| 5 | 4, 3 | remulcli 11128 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
| 6 | 0re 11114 | . . 3 ⊢ 0 ∈ ℝ | |
| 7 | 5, 6 | readdcli 11127 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
| 8 | 1, 7 | eqeltri 2827 | 1 ⊢ ;10 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 9c9 12187 ;cdc 12588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-i2m1 11074 ax-1ne0 11075 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-iota 6437 df-fv 6489 df-ov 7349 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-dec 12589 |
| This theorem is referenced by: 8lt10 12720 7lt10 12721 6lt10 12722 5lt10 12723 4lt10 12724 3lt10 12725 2lt10 12726 1lt10 12727 0.999... 15788 bpoly4 15966 plendxnocndx 17288 slotsdifdsndx 17298 slotsdifunifndx 17305 slotsdifplendx2 17320 bposlem4 27225 bposlem5 27226 dp2cl 32860 dp2lt10 32864 dp2lt 32865 dp2ltsuc 32866 dp2ltc 32867 dpfrac1 32872 dplti 32885 dpgti 32886 dpexpp1 32888 hgt750lem 34664 problem2 35710 lcmineqlem23 42154 aks4d1p1p7 42177 bgoldbtbndlem1 47915 tgblthelfgott 47925 tgoldbach 47927 |
| Copyright terms: Public domain | W3C validator |