| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version | ||
| Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| 10re | ⊢ ;10 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12626 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
| 2 | 9re 12261 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 3 | 1re 11150 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11165 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
| 5 | 4, 3 | remulcli 11166 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
| 6 | 0re 11152 | . . 3 ⊢ 0 ∈ ℝ | |
| 7 | 5, 6 | readdcli 11165 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
| 8 | 1, 7 | eqeltri 2824 | 1 ⊢ ;10 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 9c9 12224 ;cdc 12625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-i2m1 11112 ax-1ne0 11113 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 df-ov 7372 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-dec 12626 |
| This theorem is referenced by: 8lt10 12757 7lt10 12758 6lt10 12759 5lt10 12760 4lt10 12761 3lt10 12762 2lt10 12763 1lt10 12764 0.999... 15823 bpoly4 16001 plendxnocndx 17323 slotsdifdsndx 17333 slotsdifunifndx 17340 slotsdifplendx2 17355 bposlem4 27231 bposlem5 27232 dp2cl 32850 dp2lt10 32854 dp2lt 32855 dp2ltsuc 32856 dp2ltc 32857 dpfrac1 32862 dplti 32875 dpgti 32876 dpexpp1 32878 hgt750lem 34635 problem2 35646 lcmineqlem23 42032 aks4d1p1p7 42055 bgoldbtbndlem1 47799 tgblthelfgott 47809 tgoldbach 47811 |
| Copyright terms: Public domain | W3C validator |