| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version | ||
| Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| 10re | ⊢ ;10 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12734 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
| 2 | 9re 12365 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 3 | 1re 11261 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11276 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
| 5 | 4, 3 | remulcli 11277 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
| 6 | 0re 11263 | . . 3 ⊢ 0 ∈ ℝ | |
| 7 | 5, 6 | readdcli 11276 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
| 8 | 1, 7 | eqeltri 2837 | 1 ⊢ ;10 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7431 ℝcr 11154 0cc0 11155 1c1 11156 + caddc 11158 · cmul 11160 9c9 12328 ;cdc 12733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-i2m1 11223 ax-1ne0 11224 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-iota 6514 df-fv 6569 df-ov 7434 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-dec 12734 |
| This theorem is referenced by: 8lt10 12865 7lt10 12866 6lt10 12867 5lt10 12868 4lt10 12869 3lt10 12870 2lt10 12871 1lt10 12872 0.999... 15917 bpoly4 16095 plendxnocndx 17428 slotsdifdsndx 17438 slotsdifunifndx 17445 slotsdifplendx2 17461 cnfldfunALTOLDOLD 21393 thlleOLD 21717 bposlem4 27331 bposlem5 27332 dp2cl 32862 dp2lt10 32866 dp2lt 32867 dp2ltsuc 32868 dp2ltc 32869 dpfrac1 32874 dplti 32887 dpgti 32888 dpexpp1 32890 hgt750lem 34666 problem2 35671 lcmineqlem23 42052 aks4d1p1p7 42075 bgoldbtbndlem1 47792 tgblthelfgott 47802 tgoldbach 47804 prstclevalOLD 49158 |
| Copyright terms: Public domain | W3C validator |