![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version |
Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
10re | ⊢ ;10 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 11918 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9re 11551 | . . . . 5 ⊢ 9 ∈ ℝ | |
3 | 1re 10445 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10461 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
5 | 4, 3 | remulcli 10462 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
6 | 0re 10447 | . . 3 ⊢ 0 ∈ ℝ | |
7 | 5, 6 | readdcli 10461 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
8 | 1, 7 | eqeltri 2864 | 1 ⊢ ;10 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2051 (class class class)co 6982 ℝcr 10340 0cc0 10341 1c1 10342 + caddc 10344 · cmul 10346 9c9 11508 ;cdc 11917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-ext 2752 ax-1cn 10399 ax-icn 10400 ax-addcl 10401 ax-addrcl 10402 ax-mulcl 10403 ax-mulrcl 10404 ax-i2m1 10409 ax-1ne0 10410 ax-rnegex 10412 ax-rrecex 10413 ax-cnre 10414 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2761 df-cleq 2773 df-clel 2848 df-nfc 2920 df-ne 2970 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3419 df-dif 3834 df-un 3836 df-in 3838 df-ss 3845 df-nul 4182 df-if 4354 df-sn 4445 df-pr 4447 df-op 4451 df-uni 4718 df-br 4935 df-iota 6157 df-fv 6201 df-ov 6985 df-2 11509 df-3 11510 df-4 11511 df-5 11512 df-6 11513 df-7 11514 df-8 11515 df-9 11516 df-dec 11918 |
This theorem is referenced by: 8lt10 12051 7lt10 12052 6lt10 12053 5lt10 12054 4lt10 12055 3lt10 12056 2lt10 12057 1lt10 12058 0.999... 15103 bpoly4 15279 cnfldfun 20274 thlle 20558 bposlem4 25580 bposlem5 25581 dp2cl 30326 dp2lt10 30330 dp2lt 30331 dp2ltsuc 30332 dp2ltc 30333 dpfrac1 30338 dplti 30351 dpgti 30352 dpexpp1 30354 hgt750lem 31602 problem2 32469 bgoldbtbndlem1 43373 tgblthelfgott 43383 tgoldbach 43385 |
Copyright terms: Public domain | W3C validator |