![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version |
Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
10re | ⊢ ;10 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12759 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9re 12392 | . . . . 5 ⊢ 9 ∈ ℝ | |
3 | 1re 11290 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11305 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
5 | 4, 3 | remulcli 11306 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
6 | 0re 11292 | . . 3 ⊢ 0 ∈ ℝ | |
7 | 5, 6 | readdcli 11305 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
8 | 1, 7 | eqeltri 2840 | 1 ⊢ ;10 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 9c9 12355 ;cdc 12758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-i2m1 11252 ax-1ne0 11253 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-iota 6525 df-fv 6581 df-ov 7451 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-dec 12759 |
This theorem is referenced by: 8lt10 12890 7lt10 12891 6lt10 12892 5lt10 12893 4lt10 12894 3lt10 12895 2lt10 12896 1lt10 12897 0.999... 15929 bpoly4 16107 plendxnocndx 17443 slotsdifdsndx 17453 slotsdifunifndx 17460 slotsdifplendx2 17476 cnfldfunALTOLDOLD 21416 thlleOLD 21740 bposlem4 27349 bposlem5 27350 dp2cl 32844 dp2lt10 32848 dp2lt 32849 dp2ltsuc 32850 dp2ltc 32851 dpfrac1 32856 dplti 32869 dpgti 32870 dpexpp1 32872 hgt750lem 34628 problem2 35634 lcmineqlem23 42008 aks4d1p1p7 42031 bgoldbtbndlem1 47679 tgblthelfgott 47689 tgoldbach 47691 prstclevalOLD 48736 |
Copyright terms: Public domain | W3C validator |