| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version | ||
| Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| 10re | ⊢ ;10 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12707 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
| 2 | 9re 12337 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 3 | 1re 11233 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11248 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
| 5 | 4, 3 | remulcli 11249 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
| 6 | 0re 11235 | . . 3 ⊢ 0 ∈ ℝ | |
| 7 | 5, 6 | readdcli 11248 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
| 8 | 1, 7 | eqeltri 2830 | 1 ⊢ ;10 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 (class class class)co 7403 ℝcr 11126 0cc0 11127 1c1 11128 + caddc 11130 · cmul 11132 9c9 12300 ;cdc 12706 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-i2m1 11195 ax-1ne0 11196 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-iota 6483 df-fv 6538 df-ov 7406 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-dec 12707 |
| This theorem is referenced by: 8lt10 12838 7lt10 12839 6lt10 12840 5lt10 12841 4lt10 12842 3lt10 12843 2lt10 12844 1lt10 12845 0.999... 15895 bpoly4 16073 plendxnocndx 17396 slotsdifdsndx 17406 slotsdifunifndx 17413 slotsdifplendx2 17428 bposlem4 27248 bposlem5 27249 dp2cl 32800 dp2lt10 32804 dp2lt 32805 dp2ltsuc 32806 dp2ltc 32807 dpfrac1 32812 dplti 32825 dpgti 32826 dpexpp1 32828 hgt750lem 34629 problem2 35634 lcmineqlem23 42010 aks4d1p1p7 42033 bgoldbtbndlem1 47767 tgblthelfgott 47777 tgoldbach 47779 |
| Copyright terms: Public domain | W3C validator |