| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version | ||
| Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| 10re | ⊢ ;10 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12657 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
| 2 | 9re 12292 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 3 | 1re 11181 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11196 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
| 5 | 4, 3 | remulcli 11197 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
| 6 | 0re 11183 | . . 3 ⊢ 0 ∈ ℝ | |
| 7 | 5, 6 | readdcli 11196 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
| 8 | 1, 7 | eqeltri 2825 | 1 ⊢ ;10 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7390 ℝcr 11074 0cc0 11075 1c1 11076 + caddc 11078 · cmul 11080 9c9 12255 ;cdc 12656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-iota 6467 df-fv 6522 df-ov 7393 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-dec 12657 |
| This theorem is referenced by: 8lt10 12788 7lt10 12789 6lt10 12790 5lt10 12791 4lt10 12792 3lt10 12793 2lt10 12794 1lt10 12795 0.999... 15854 bpoly4 16032 plendxnocndx 17354 slotsdifdsndx 17364 slotsdifunifndx 17371 slotsdifplendx2 17386 bposlem4 27205 bposlem5 27206 dp2cl 32807 dp2lt10 32811 dp2lt 32812 dp2ltsuc 32813 dp2ltc 32814 dpfrac1 32819 dplti 32832 dpgti 32833 dpexpp1 32835 hgt750lem 34649 problem2 35660 lcmineqlem23 42046 aks4d1p1p7 42069 bgoldbtbndlem1 47810 tgblthelfgott 47820 tgoldbach 47822 |
| Copyright terms: Public domain | W3C validator |