![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version |
Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
10re | ⊢ ;10 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12731 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9re 12362 | . . . . 5 ⊢ 9 ∈ ℝ | |
3 | 1re 11258 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11273 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
5 | 4, 3 | remulcli 11274 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
6 | 0re 11260 | . . 3 ⊢ 0 ∈ ℝ | |
7 | 5, 6 | readdcli 11273 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
8 | 1, 7 | eqeltri 2834 | 1 ⊢ ;10 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2105 (class class class)co 7430 ℝcr 11151 0cc0 11152 1c1 11153 + caddc 11155 · cmul 11157 9c9 12325 ;cdc 12730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-i2m1 11220 ax-1ne0 11221 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-iota 6515 df-fv 6570 df-ov 7433 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-dec 12731 |
This theorem is referenced by: 8lt10 12862 7lt10 12863 6lt10 12864 5lt10 12865 4lt10 12866 3lt10 12867 2lt10 12868 1lt10 12869 0.999... 15913 bpoly4 16091 plendxnocndx 17429 slotsdifdsndx 17439 slotsdifunifndx 17446 slotsdifplendx2 17462 cnfldfunALTOLDOLD 21410 thlleOLD 21734 bposlem4 27345 bposlem5 27346 dp2cl 32846 dp2lt10 32850 dp2lt 32851 dp2ltsuc 32852 dp2ltc 32853 dpfrac1 32858 dplti 32871 dpgti 32872 dpexpp1 32874 hgt750lem 34644 problem2 35650 lcmineqlem23 42032 aks4d1p1p7 42055 bgoldbtbndlem1 47729 tgblthelfgott 47739 tgoldbach 47741 prstclevalOLD 48869 |
Copyright terms: Public domain | W3C validator |