Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version |
Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
10re | ⊢ ;10 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12543 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9re 12177 | . . . . 5 ⊢ 9 ∈ ℝ | |
3 | 1re 11080 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 11095 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
5 | 4, 3 | remulcli 11096 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
6 | 0re 11082 | . . 3 ⊢ 0 ∈ ℝ | |
7 | 5, 6 | readdcli 11095 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
8 | 1, 7 | eqeltri 2834 | 1 ⊢ ;10 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7341 ℝcr 10975 0cc0 10976 1c1 10977 + caddc 10979 · cmul 10981 9c9 12140 ;cdc 12542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-i2m1 11044 ax-1ne0 11045 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-nul 4274 df-if 4478 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-br 5097 df-iota 6435 df-fv 6491 df-ov 7344 df-2 12141 df-3 12142 df-4 12143 df-5 12144 df-6 12145 df-7 12146 df-8 12147 df-9 12148 df-dec 12543 |
This theorem is referenced by: 8lt10 12674 7lt10 12675 6lt10 12676 5lt10 12677 4lt10 12678 3lt10 12679 2lt10 12680 1lt10 12681 0.999... 15692 bpoly4 15868 plendxnocndx 17191 slotsdifdsndx 17201 slotsdifunifndx 17208 slotsdifplendx2 17224 cnfldfunALTOLD 20716 thlleOLD 21009 bposlem4 26540 bposlem5 26541 dp2cl 31439 dp2lt10 31443 dp2lt 31444 dp2ltsuc 31445 dp2ltc 31446 dpfrac1 31451 dplti 31464 dpgti 31465 dpexpp1 31467 hgt750lem 32929 problem2 33921 lcmineqlem23 40364 aks4d1p1p7 40387 bgoldbtbndlem1 45675 tgblthelfgott 45685 tgoldbach 45687 prstclevalOLD 46768 |
Copyright terms: Public domain | W3C validator |