Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version |
Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
10re | ⊢ ;10 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12367 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9re 12002 | . . . . 5 ⊢ 9 ∈ ℝ | |
3 | 1re 10906 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10921 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
5 | 4, 3 | remulcli 10922 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
6 | 0re 10908 | . . 3 ⊢ 0 ∈ ℝ | |
7 | 5, 6 | readdcli 10921 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
8 | 1, 7 | eqeltri 2835 | 1 ⊢ ;10 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 9c9 11965 ;cdc 12366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-i2m1 10870 ax-1ne0 10871 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-iota 6376 df-fv 6426 df-ov 7258 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-dec 12367 |
This theorem is referenced by: 8lt10 12498 7lt10 12499 6lt10 12500 5lt10 12501 4lt10 12502 3lt10 12503 2lt10 12504 1lt10 12505 0.999... 15521 bpoly4 15697 cnfldfun 20522 thlle 20814 bposlem4 26340 bposlem5 26341 dp2cl 31056 dp2lt10 31060 dp2lt 31061 dp2ltsuc 31062 dp2ltc 31063 dpfrac1 31068 dplti 31081 dpgti 31082 dpexpp1 31084 hgt750lem 32531 problem2 33524 lcmineqlem23 39987 aks4d1p1p7 40010 bgoldbtbndlem1 45145 tgblthelfgott 45155 tgoldbach 45157 prstcleval 46237 |
Copyright terms: Public domain | W3C validator |