Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version |
Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
Ref | Expression |
---|---|
10re | ⊢ ;10 ∈ ℝ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-dec 12438 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
2 | 9re 12072 | . . . . 5 ⊢ 9 ∈ ℝ | |
3 | 1re 10975 | . . . . 5 ⊢ 1 ∈ ℝ | |
4 | 2, 3 | readdcli 10990 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
5 | 4, 3 | remulcli 10991 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
6 | 0re 10977 | . . 3 ⊢ 0 ∈ ℝ | |
7 | 5, 6 | readdcli 10990 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
8 | 1, 7 | eqeltri 2835 | 1 ⊢ ;10 ∈ ℝ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 9c9 12035 ;cdc 12437 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-i2m1 10939 ax-1ne0 10940 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-iota 6391 df-fv 6441 df-ov 7278 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-dec 12438 |
This theorem is referenced by: 8lt10 12569 7lt10 12570 6lt10 12571 5lt10 12572 4lt10 12573 3lt10 12574 2lt10 12575 1lt10 12576 0.999... 15593 bpoly4 15769 plendxnocndx 17094 slotsdifdsndx 17104 slotsdifunifndx 17111 slotsdifplendx2 17127 cnfldfunALTOLD 20611 thlleOLD 20904 bposlem4 26435 bposlem5 26436 dp2cl 31154 dp2lt10 31158 dp2lt 31159 dp2ltsuc 31160 dp2ltc 31161 dpfrac1 31166 dplti 31179 dpgti 31180 dpexpp1 31182 hgt750lem 32631 problem2 33624 lcmineqlem23 40059 aks4d1p1p7 40082 bgoldbtbndlem1 45257 tgblthelfgott 45267 tgoldbach 45269 prstclevalOLD 46350 |
Copyright terms: Public domain | W3C validator |