| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 10re | Structured version Visualization version GIF version | ||
| Description: The number 10 is real. (Contributed by NM, 5-Feb-2007.) (Revised by AV, 8-Sep-2021.) Reduce dependencies on axioms. (Revised by Steven Nguyen, 8-Oct-2022.) |
| Ref | Expression |
|---|---|
| 10re | ⊢ ;10 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dec 12650 | . 2 ⊢ ;10 = (((9 + 1) · 1) + 0) | |
| 2 | 9re 12285 | . . . . 5 ⊢ 9 ∈ ℝ | |
| 3 | 1re 11174 | . . . . 5 ⊢ 1 ∈ ℝ | |
| 4 | 2, 3 | readdcli 11189 | . . . 4 ⊢ (9 + 1) ∈ ℝ |
| 5 | 4, 3 | remulcli 11190 | . . 3 ⊢ ((9 + 1) · 1) ∈ ℝ |
| 6 | 0re 11176 | . . 3 ⊢ 0 ∈ ℝ | |
| 7 | 5, 6 | readdcli 11189 | . 2 ⊢ (((9 + 1) · 1) + 0) ∈ ℝ |
| 8 | 1, 7 | eqeltri 2824 | 1 ⊢ ;10 ∈ ℝ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7387 ℝcr 11067 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 9c9 12248 ;cdc 12649 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-i2m1 11136 ax-1ne0 11137 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-iota 6464 df-fv 6519 df-ov 7390 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-dec 12650 |
| This theorem is referenced by: 8lt10 12781 7lt10 12782 6lt10 12783 5lt10 12784 4lt10 12785 3lt10 12786 2lt10 12787 1lt10 12788 0.999... 15847 bpoly4 16025 plendxnocndx 17347 slotsdifdsndx 17357 slotsdifunifndx 17364 slotsdifplendx2 17379 bposlem4 27198 bposlem5 27199 dp2cl 32800 dp2lt10 32804 dp2lt 32805 dp2ltsuc 32806 dp2ltc 32807 dpfrac1 32812 dplti 32825 dpgti 32826 dpexpp1 32828 hgt750lem 34642 problem2 35653 lcmineqlem23 42039 aks4d1p1p7 42062 bgoldbtbndlem1 47806 tgblthelfgott 47816 tgoldbach 47818 |
| Copyright terms: Public domain | W3C validator |