Step | Hyp | Ref
| Expression |
1 | | eldifi 4057 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → 𝐷 ∈ ℕ) |
2 | | eldifn 4058 |
. . . 4
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ¬ 𝐷 ∈
◻NN) |
3 | 1 | anim1i 614 |
. . . . 5
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (√‘𝐷) ∈ ℚ) → (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈
ℚ)) |
4 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷)) |
5 | 4 | eleq1d 2823 |
. . . . . 6
⊢ (𝑎 = 𝐷 → ((√‘𝑎) ∈ ℚ ↔ (√‘𝐷) ∈
ℚ)) |
6 | | df-squarenn 40579 |
. . . . . 6
⊢
◻NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈
ℚ} |
7 | 5, 6 | elrab2 3620 |
. . . . 5
⊢ (𝐷 ∈
◻NN ↔ (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈
ℚ)) |
8 | 3, 7 | sylibr 233 |
. . . 4
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (√‘𝐷) ∈ ℚ) → 𝐷 ∈
◻NN) |
9 | 2, 8 | mtand 812 |
. . 3
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ¬ (√‘𝐷) ∈ ℚ) |
10 | | pellex 40573 |
. . 3
⊢ ((𝐷 ∈ ℕ ∧ ¬
(√‘𝐷) ∈
ℚ) → ∃𝑐
∈ ℕ ∃𝑑
∈ ℕ ((𝑐↑2)
− (𝐷 · (𝑑↑2))) = 1) |
11 | 1, 9, 10 | syl2anc 583 |
. 2
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) |
12 | | simpll 763 |
. . . . . 6
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝐷 ∈ (ℕ ∖
◻NN)) |
13 | | nnnn0 12170 |
. . . . . . . 8
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℕ0) |
14 | 13 | adantr 480 |
. . . . . . 7
⊢ ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑐 ∈
ℕ0) |
15 | 14 | ad2antlr 723 |
. . . . . 6
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑐 ∈ ℕ0) |
16 | | nnnn0 12170 |
. . . . . . . 8
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℕ0) |
17 | 16 | adantl 481 |
. . . . . . 7
⊢ ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑑 ∈
ℕ0) |
18 | 17 | ad2antlr 723 |
. . . . . 6
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑑 ∈ ℕ0) |
19 | | simpr 484 |
. . . . . 6
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) |
20 | | pellqrexplicit 40615 |
. . . . . 6
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ 𝑐 ∈ ℕ0 ∧ 𝑑 ∈ ℕ0)
∧ ((𝑐↑2) −
(𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷)) |
21 | 12, 15, 18, 19, 20 | syl31anc 1371 |
. . . . 5
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷)) |
22 | | 1re 10906 |
. . . . . . . 8
⊢ 1 ∈
ℝ |
23 | 22 | a1i 11 |
. . . . . . 7
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ∈
ℝ) |
24 | 22, 22 | readdcli 10921 |
. . . . . . . 8
⊢ (1 + 1)
∈ ℝ |
25 | 24 | a1i 11 |
. . . . . . 7
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ∈
ℝ) |
26 | | nnre 11910 |
. . . . . . . . 9
⊢ (𝑐 ∈ ℕ → 𝑐 ∈
ℝ) |
27 | 26 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑐 ∈ ℝ) |
28 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℕ) |
29 | 28 | nnrpd 12699 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈
ℝ+) |
30 | 29 | rpsqrtcld 15051 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈
ℝ+) |
31 | 30 | rpred 12701 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈
ℝ) |
32 | | nnre 11910 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ℕ → 𝑑 ∈
ℝ) |
33 | 32 | ad2antll 725 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑑 ∈ ℝ) |
34 | 31, 33 | remulcld 10936 |
. . . . . . . 8
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) →
((√‘𝐷) ·
𝑑) ∈
ℝ) |
35 | 27, 34 | readdcld 10935 |
. . . . . . 7
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ ℝ) |
36 | 22 | ltp1i 11809 |
. . . . . . . 8
⊢ 1 < (1
+ 1) |
37 | 36 | a1i 11 |
. . . . . . 7
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (1 +
1)) |
38 | | nnge1 11931 |
. . . . . . . . 9
⊢ (𝑐 ∈ ℕ → 1 ≤
𝑐) |
39 | 38 | ad2antrl 724 |
. . . . . . . 8
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑐) |
40 | | 1t1e1 12065 |
. . . . . . . . 9
⊢ (1
· 1) = 1 |
41 | | nnge1 11931 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℕ → 1 ≤
𝐷) |
42 | | sq1 13840 |
. . . . . . . . . . . . . 14
⊢
(1↑2) = 1 |
43 | 42 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℕ →
(1↑2) = 1) |
44 | | nncn 11911 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℂ) |
45 | 44 | sqsqrtd 15079 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℕ →
((√‘𝐷)↑2)
= 𝐷) |
46 | 41, 43, 45 | 3brtr4d 5102 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℕ →
(1↑2) ≤ ((√‘𝐷)↑2)) |
47 | 22 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℕ → 1 ∈
ℝ) |
48 | | nnrp 12670 |
. . . . . . . . . . . . . . 15
⊢ (𝐷 ∈ ℕ → 𝐷 ∈
ℝ+) |
49 | 48 | rpsqrtcld 15051 |
. . . . . . . . . . . . . 14
⊢ (𝐷 ∈ ℕ →
(√‘𝐷) ∈
ℝ+) |
50 | 49 | rpred 12701 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℕ →
(√‘𝐷) ∈
ℝ) |
51 | | 0le1 11428 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
1 |
52 | 51 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℕ → 0 ≤
1) |
53 | 49 | rpge0d 12705 |
. . . . . . . . . . . . 13
⊢ (𝐷 ∈ ℕ → 0 ≤
(√‘𝐷)) |
54 | 47, 50, 52, 53 | le2sqd 13902 |
. . . . . . . . . . . 12
⊢ (𝐷 ∈ ℕ → (1 ≤
(√‘𝐷) ↔
(1↑2) ≤ ((√‘𝐷)↑2))) |
55 | 46, 54 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝐷 ∈ ℕ → 1 ≤
(√‘𝐷)) |
56 | 28, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤
(√‘𝐷)) |
57 | | nnge1 11931 |
. . . . . . . . . . 11
⊢ (𝑑 ∈ ℕ → 1 ≤
𝑑) |
58 | 57 | ad2antll 725 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑑) |
59 | 23, 51 | jctir 520 |
. . . . . . . . . . 11
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 ∈ ℝ
∧ 0 ≤ 1)) |
60 | | lemul12a 11763 |
. . . . . . . . . . 11
⊢ ((((1
∈ ℝ ∧ 0 ≤ 1) ∧ (√‘𝐷) ∈ ℝ) ∧ ((1 ∈ ℝ
∧ 0 ≤ 1) ∧ 𝑑
∈ ℝ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤
((√‘𝐷) ·
𝑑))) |
61 | 59, 31, 59, 33, 60 | syl22anc 835 |
. . . . . . . . . 10
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((1 ≤
(√‘𝐷) ∧ 1
≤ 𝑑) → (1 ·
1) ≤ ((√‘𝐷)
· 𝑑))) |
62 | 56, 58, 61 | mp2and 695 |
. . . . . . . . 9
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 · 1) ≤
((√‘𝐷) ·
𝑑)) |
63 | 40, 62 | eqbrtrrid 5106 |
. . . . . . . 8
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤
((√‘𝐷) ·
𝑑)) |
64 | 23, 23, 27, 34, 39, 63 | le2addd 11524 |
. . . . . . 7
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ≤ (𝑐 + ((√‘𝐷) · 𝑑))) |
65 | 23, 25, 35, 37, 64 | ltletrd 11065 |
. . . . . 6
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (𝑐 + ((√‘𝐷) · 𝑑))) |
66 | 65 | adantr 480 |
. . . . 5
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 1 < (𝑐 + ((√‘𝐷) · 𝑑))) |
67 | | breq2 5074 |
. . . . . 6
⊢ (𝑥 = (𝑐 + ((√‘𝐷) · 𝑑)) → (1 < 𝑥 ↔ 1 < (𝑐 + ((√‘𝐷) · 𝑑)))) |
68 | 67 | rspcev 3552 |
. . . . 5
⊢ (((𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷) ∧ 1 < (𝑐 + ((√‘𝐷) · 𝑑))) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥) |
69 | 21, 66, 68 | syl2anc 583 |
. . . 4
⊢ (((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥) |
70 | 69 | ex 412 |
. . 3
⊢ ((𝐷 ∈ (ℕ ∖
◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)) |
71 | 70 | rexlimdvva 3222 |
. 2
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → (∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)) |
72 | 11, 71 | mpd 15 |
1
⊢ (𝐷 ∈ (ℕ ∖
◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥) |