Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrex Structured version   Visualization version   GIF version

Theorem pellqrex 39820
Description: There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellqrex (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Distinct variable group:   𝑥,𝐷

Proof of Theorem pellqrex
Dummy variables 𝑎 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4054 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2 eldifn 4055 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ 𝐷 ∈ ◻NN)
31anim1i 617 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
4 fveq2 6645 . . . . . . 7 (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷))
54eleq1d 2874 . . . . . 6 (𝑎 = 𝐷 → ((√‘𝑎) ∈ ℚ ↔ (√‘𝐷) ∈ ℚ))
6 df-squarenn 39782 . . . . . 6 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
75, 6elrab2 3631 . . . . 5 (𝐷 ∈ ◻NN ↔ (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
83, 7sylibr 237 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → 𝐷 ∈ ◻NN)
92, 8mtand 815 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ (√‘𝐷) ∈ ℚ)
10 pellex 39776 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
111, 9, 10syl2anc 587 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
12 simpll 766 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝐷 ∈ (ℕ ∖ ◻NN))
13 nnnn0 11892 . . . . . . . 8 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
1413adantr 484 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑐 ∈ ℕ0)
1514ad2antlr 726 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑐 ∈ ℕ0)
16 nnnn0 11892 . . . . . . . 8 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
1716adantl 485 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
1817ad2antlr 726 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑑 ∈ ℕ0)
19 simpr 488 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
20 pellqrexplicit 39818 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
2112, 15, 18, 19, 20syl31anc 1370 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
22 1re 10630 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ∈ ℝ)
2422, 22readdcli 10645 . . . . . . . 8 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ∈ ℝ)
26 nnre 11632 . . . . . . . . 9 (𝑐 ∈ ℕ → 𝑐 ∈ ℝ)
2726ad2antrl 727 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑐 ∈ ℝ)
281adantr 484 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℕ)
2928nnrpd 12417 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℝ+)
3029rpsqrtcld 14763 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ+)
3130rpred 12419 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ)
32 nnre 11632 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
3332ad2antll 728 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑑 ∈ ℝ)
3431, 33remulcld 10660 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((√‘𝐷) · 𝑑) ∈ ℝ)
3527, 34readdcld 10659 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ ℝ)
3622ltp1i 11533 . . . . . . . 8 1 < (1 + 1)
3736a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (1 + 1))
38 nnge1 11653 . . . . . . . . 9 (𝑐 ∈ ℕ → 1 ≤ 𝑐)
3938ad2antrl 727 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑐)
40 1t1e1 11787 . . . . . . . . 9 (1 · 1) = 1
41 nnge1 11653 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ≤ 𝐷)
42 sq1 13554 . . . . . . . . . . . . . 14 (1↑2) = 1
4342a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (1↑2) = 1)
44 nncn 11633 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
4544sqsqrtd 14791 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → ((√‘𝐷)↑2) = 𝐷)
4641, 43, 453brtr4d 5062 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1↑2) ≤ ((√‘𝐷)↑2))
4722a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ∈ ℝ)
48 nnrp 12388 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
4948rpsqrtcld 14763 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ+)
5049rpred 12419 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ)
51 0le1 11152 . . . . . . . . . . . . . 14 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ 1)
5349rpge0d 12423 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ (√‘𝐷))
5447, 50, 52, 53le2sqd 13616 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1 ≤ (√‘𝐷) ↔ (1↑2) ≤ ((√‘𝐷)↑2)))
5546, 54mpbird 260 . . . . . . . . . . 11 (𝐷 ∈ ℕ → 1 ≤ (√‘𝐷))
5628, 55syl 17 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ (√‘𝐷))
57 nnge1 11653 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
5857ad2antll 728 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑑)
5923, 51jctir 524 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 ≤ 1))
60 lemul12a 11487 . . . . . . . . . . 11 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (√‘𝐷) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑑 ∈ ℝ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6159, 31, 59, 33, 60syl22anc 837 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6256, 58, 61mp2and 698 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 · 1) ≤ ((√‘𝐷) · 𝑑))
6340, 62eqbrtrrid 5066 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ ((√‘𝐷) · 𝑑))
6423, 23, 27, 34, 39, 63le2addd 11248 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ≤ (𝑐 + ((√‘𝐷) · 𝑑)))
6523, 25, 35, 37, 64ltletrd 10789 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
6665adantr 484 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
67 breq2 5034 . . . . . 6 (𝑥 = (𝑐 + ((√‘𝐷) · 𝑑)) → (1 < 𝑥 ↔ 1 < (𝑐 + ((√‘𝐷) · 𝑑))))
6867rspcev 3571 . . . . 5 (((𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷) ∧ 1 < (𝑐 + ((√‘𝐷) · 𝑑))) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
6921, 66, 68syl2anc 587 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
7069ex 416 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7170rexlimdvva 3253 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7211, 71mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3107  cdif 3878   class class class wbr 5030  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  cn 11625  2c2 11680  0cn0 11885  cq 12336  cexp 13425  csqrt 14584  NNcsquarenn 39777  Pell1QRcpell1qr 39778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-omul 8090  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-acn 9355  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-q 12337  df-rp 12378  df-ico 12732  df-fz 12886  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15834  df-numer 16065  df-denom 16066  df-squarenn 39782  df-pell1qr 39783
This theorem is referenced by:  pellfundre  39822  pellfundge  39823  pellfundglb  39826
  Copyright terms: Public domain W3C validator