Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrex Structured version   Visualization version   GIF version

Theorem pellqrex 38817
Description: There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellqrex (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Distinct variable group:   𝑥,𝐷

Proof of Theorem pellqrex
Dummy variables 𝑎 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 3989 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2 eldifn 3990 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ 𝐷 ∈ ◻NN)
31anim1i 605 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
4 fveq2 6493 . . . . . . 7 (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷))
54eleq1d 2844 . . . . . 6 (𝑎 = 𝐷 → ((√‘𝑎) ∈ ℚ ↔ (√‘𝐷) ∈ ℚ))
6 df-squarenn 38779 . . . . . 6 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
75, 6elrab2 3593 . . . . 5 (𝐷 ∈ ◻NN ↔ (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
83, 7sylibr 226 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → 𝐷 ∈ ◻NN)
92, 8mtand 803 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ (√‘𝐷) ∈ ℚ)
10 pellex 38773 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
111, 9, 10syl2anc 576 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
12 simpll 754 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝐷 ∈ (ℕ ∖ ◻NN))
13 nnnn0 11708 . . . . . . . 8 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
1413adantr 473 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑐 ∈ ℕ0)
1514ad2antlr 714 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑐 ∈ ℕ0)
16 nnnn0 11708 . . . . . . . 8 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
1716adantl 474 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
1817ad2antlr 714 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑑 ∈ ℕ0)
19 simpr 477 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
20 pellqrexplicit 38815 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
2112, 15, 18, 19, 20syl31anc 1353 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
22 1re 10431 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ∈ ℝ)
2422, 22readdcli 10447 . . . . . . . 8 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ∈ ℝ)
26 nnre 11439 . . . . . . . . 9 (𝑐 ∈ ℕ → 𝑐 ∈ ℝ)
2726ad2antrl 715 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑐 ∈ ℝ)
281adantr 473 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℕ)
2928nnrpd 12239 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℝ+)
3029rpsqrtcld 14622 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ+)
3130rpred 12241 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ)
32 nnre 11439 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
3332ad2antll 716 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑑 ∈ ℝ)
3431, 33remulcld 10462 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((√‘𝐷) · 𝑑) ∈ ℝ)
3527, 34readdcld 10461 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ ℝ)
3622ltp1i 11337 . . . . . . . 8 1 < (1 + 1)
3736a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (1 + 1))
38 nnge1 11461 . . . . . . . . 9 (𝑐 ∈ ℕ → 1 ≤ 𝑐)
3938ad2antrl 715 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑐)
40 1t1e1 11602 . . . . . . . . 9 (1 · 1) = 1
41 nnge1 11461 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ≤ 𝐷)
42 sq1 13366 . . . . . . . . . . . . . 14 (1↑2) = 1
4342a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (1↑2) = 1)
44 nncn 11440 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
4544sqsqrtd 14650 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → ((√‘𝐷)↑2) = 𝐷)
4641, 43, 453brtr4d 4955 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1↑2) ≤ ((√‘𝐷)↑2))
4722a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ∈ ℝ)
48 nnrp 12210 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
4948rpsqrtcld 14622 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ+)
5049rpred 12241 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ)
51 0le1 10956 . . . . . . . . . . . . . 14 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ 1)
5349rpge0d 12245 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ (√‘𝐷))
5447, 50, 52, 53le2sqd 13428 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1 ≤ (√‘𝐷) ↔ (1↑2) ≤ ((√‘𝐷)↑2)))
5546, 54mpbird 249 . . . . . . . . . . 11 (𝐷 ∈ ℕ → 1 ≤ (√‘𝐷))
5628, 55syl 17 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ (√‘𝐷))
57 nnge1 11461 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
5857ad2antll 716 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑑)
5923, 51jctir 513 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 ≤ 1))
60 lemul12a 11291 . . . . . . . . . . 11 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (√‘𝐷) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑑 ∈ ℝ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6159, 31, 59, 33, 60syl22anc 826 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6256, 58, 61mp2and 686 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 · 1) ≤ ((√‘𝐷) · 𝑑))
6340, 62syl5eqbrr 4959 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ ((√‘𝐷) · 𝑑))
6423, 23, 27, 34, 39, 63le2addd 11052 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ≤ (𝑐 + ((√‘𝐷) · 𝑑)))
6523, 25, 35, 37, 64ltletrd 10592 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
6665adantr 473 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
67 breq2 4927 . . . . . 6 (𝑥 = (𝑐 + ((√‘𝐷) · 𝑑)) → (1 < 𝑥 ↔ 1 < (𝑐 + ((√‘𝐷) · 𝑑))))
6867rspcev 3529 . . . . 5 (((𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷) ∧ 1 < (𝑐 + ((√‘𝐷) · 𝑑))) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
6921, 66, 68syl2anc 576 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
7069ex 405 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7170rexlimdvva 3233 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7211, 71mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 387   = wceq 1507  wcel 2048  wrex 3083  cdif 3822   class class class wbr 4923  cfv 6182  (class class class)co 6970  cr 10326  0cc0 10327  1c1 10328   + caddc 10330   · cmul 10332   < clt 10466  cle 10467  cmin 10662  cn 11431  2c2 11488  0cn0 11700  cq 12155  cexp 13237  csqrt 14443  NNcsquarenn 38774  Pell1QRcpell1qr 38775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2745  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273  ax-inf2 8890  ax-cnex 10383  ax-resscn 10384  ax-1cn 10385  ax-icn 10386  ax-addcl 10387  ax-addrcl 10388  ax-mulcl 10389  ax-mulrcl 10390  ax-mulcom 10391  ax-addass 10392  ax-mulass 10393  ax-distr 10394  ax-i2m1 10395  ax-1ne0 10396  ax-1rid 10397  ax-rnegex 10398  ax-rrecex 10399  ax-cnre 10400  ax-pre-lttri 10401  ax-pre-lttrn 10402  ax-pre-ltadd 10403  ax-pre-mulgt0 10404  ax-pre-sup 10405
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2754  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-nel 3068  df-ral 3087  df-rex 3088  df-reu 3089  df-rmo 3090  df-rab 3091  df-v 3411  df-sbc 3678  df-csb 3783  df-dif 3828  df-un 3830  df-in 3832  df-ss 3839  df-pss 3841  df-nul 4174  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4707  df-int 4744  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-tr 5025  df-id 5305  df-eprel 5310  df-po 5319  df-so 5320  df-fr 5359  df-se 5360  df-we 5361  df-xp 5406  df-rel 5407  df-cnv 5408  df-co 5409  df-dm 5410  df-rn 5411  df-res 5412  df-ima 5413  df-pred 5980  df-ord 6026  df-on 6027  df-lim 6028  df-suc 6029  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-isom 6191  df-riota 6931  df-ov 6973  df-oprab 6974  df-mpo 6975  df-om 7391  df-1st 7494  df-2nd 7495  df-wrecs 7743  df-recs 7805  df-rdg 7843  df-1o 7897  df-oadd 7901  df-omul 7902  df-er 8081  df-map 8200  df-en 8299  df-dom 8300  df-sdom 8301  df-fin 8302  df-sup 8693  df-inf 8694  df-oi 8761  df-card 9154  df-acn 9157  df-pnf 10468  df-mnf 10469  df-xr 10470  df-ltxr 10471  df-le 10472  df-sub 10664  df-neg 10665  df-div 11091  df-nn 11432  df-2 11496  df-3 11497  df-n0 11701  df-xnn0 11773  df-z 11787  df-uz 12052  df-q 12156  df-rp 12198  df-ico 12553  df-fz 12702  df-fl 12970  df-mod 13046  df-seq 13178  df-exp 13238  df-hash 13499  df-cj 14309  df-re 14310  df-im 14311  df-sqrt 14445  df-abs 14446  df-dvds 15458  df-gcd 15694  df-numer 15921  df-denom 15922  df-squarenn 38779  df-pell1qr 38780
This theorem is referenced by:  pellfundre  38819  pellfundge  38820  pellfundglb  38823
  Copyright terms: Public domain W3C validator