Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pellqrex Structured version   Visualization version   GIF version

Theorem pellqrex 42867
Description: There is a nontrivial solution of a Pell equation in the first quadrant. (Contributed by Stefan O'Rear, 18-Sep-2014.)
Assertion
Ref Expression
pellqrex (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Distinct variable group:   𝑥,𝐷

Proof of Theorem pellqrex
Dummy variables 𝑎 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifi 4094 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → 𝐷 ∈ ℕ)
2 eldifn 4095 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ 𝐷 ∈ ◻NN)
31anim1i 615 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
4 fveq2 6858 . . . . . . 7 (𝑎 = 𝐷 → (√‘𝑎) = (√‘𝐷))
54eleq1d 2813 . . . . . 6 (𝑎 = 𝐷 → ((√‘𝑎) ∈ ℚ ↔ (√‘𝐷) ∈ ℚ))
6 df-squarenn 42829 . . . . . 6 NN = {𝑎 ∈ ℕ ∣ (√‘𝑎) ∈ ℚ}
75, 6elrab2 3662 . . . . 5 (𝐷 ∈ ◻NN ↔ (𝐷 ∈ ℕ ∧ (√‘𝐷) ∈ ℚ))
83, 7sylibr 234 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (√‘𝐷) ∈ ℚ) → 𝐷 ∈ ◻NN)
92, 8mtand 815 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → ¬ (√‘𝐷) ∈ ℚ)
10 pellex 42823 . . 3 ((𝐷 ∈ ℕ ∧ ¬ (√‘𝐷) ∈ ℚ) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
111, 9, 10syl2anc 584 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
12 simpll 766 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝐷 ∈ (ℕ ∖ ◻NN))
13 nnnn0 12449 . . . . . . . 8 (𝑐 ∈ ℕ → 𝑐 ∈ ℕ0)
1413adantr 480 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑐 ∈ ℕ0)
1514ad2antlr 727 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑐 ∈ ℕ0)
16 nnnn0 12449 . . . . . . . 8 (𝑑 ∈ ℕ → 𝑑 ∈ ℕ0)
1716adantl 481 . . . . . . 7 ((𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ) → 𝑑 ∈ ℕ0)
1817ad2antlr 727 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 𝑑 ∈ ℕ0)
19 simpr 484 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1)
20 pellqrexplicit 42865 . . . . . 6 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝑐 ∈ ℕ0𝑑 ∈ ℕ0) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
2112, 15, 18, 19, 20syl31anc 1375 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷))
22 1re 11174 . . . . . . . 8 1 ∈ ℝ
2322a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ∈ ℝ)
2422, 22readdcli 11189 . . . . . . . 8 (1 + 1) ∈ ℝ
2524a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ∈ ℝ)
26 nnre 12193 . . . . . . . . 9 (𝑐 ∈ ℕ → 𝑐 ∈ ℝ)
2726ad2antrl 728 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑐 ∈ ℝ)
281adantr 480 . . . . . . . . . . . 12 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℕ)
2928nnrpd 12993 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝐷 ∈ ℝ+)
3029rpsqrtcld 15378 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ+)
3130rpred 12995 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (√‘𝐷) ∈ ℝ)
32 nnre 12193 . . . . . . . . . 10 (𝑑 ∈ ℕ → 𝑑 ∈ ℝ)
3332ad2antll 729 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 𝑑 ∈ ℝ)
3431, 33remulcld 11204 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((√‘𝐷) · 𝑑) ∈ ℝ)
3527, 34readdcld 11203 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (𝑐 + ((√‘𝐷) · 𝑑)) ∈ ℝ)
3622ltp1i 12087 . . . . . . . 8 1 < (1 + 1)
3736a1i 11 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (1 + 1))
38 nnge1 12214 . . . . . . . . 9 (𝑐 ∈ ℕ → 1 ≤ 𝑐)
3938ad2antrl 728 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑐)
40 1t1e1 12343 . . . . . . . . 9 (1 · 1) = 1
41 nnge1 12214 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ≤ 𝐷)
42 sq1 14160 . . . . . . . . . . . . . 14 (1↑2) = 1
4342a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (1↑2) = 1)
44 nncn 12194 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → 𝐷 ∈ ℂ)
4544sqsqrtd 15408 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → ((√‘𝐷)↑2) = 𝐷)
4641, 43, 453brtr4d 5139 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1↑2) ≤ ((√‘𝐷)↑2))
4722a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 1 ∈ ℝ)
48 nnrp 12963 . . . . . . . . . . . . . . 15 (𝐷 ∈ ℕ → 𝐷 ∈ ℝ+)
4948rpsqrtcld 15378 . . . . . . . . . . . . . 14 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ+)
5049rpred 12995 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → (√‘𝐷) ∈ ℝ)
51 0le1 11701 . . . . . . . . . . . . . 14 0 ≤ 1
5251a1i 11 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ 1)
5349rpge0d 12999 . . . . . . . . . . . . 13 (𝐷 ∈ ℕ → 0 ≤ (√‘𝐷))
5447, 50, 52, 53le2sqd 14222 . . . . . . . . . . . 12 (𝐷 ∈ ℕ → (1 ≤ (√‘𝐷) ↔ (1↑2) ≤ ((√‘𝐷)↑2)))
5546, 54mpbird 257 . . . . . . . . . . 11 (𝐷 ∈ ℕ → 1 ≤ (√‘𝐷))
5628, 55syl 17 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ (√‘𝐷))
57 nnge1 12214 . . . . . . . . . . 11 (𝑑 ∈ ℕ → 1 ≤ 𝑑)
5857ad2antll 729 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ 𝑑)
5923, 51jctir 520 . . . . . . . . . . 11 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 ∈ ℝ ∧ 0 ≤ 1))
60 lemul12a 12040 . . . . . . . . . . 11 ((((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (√‘𝐷) ∈ ℝ) ∧ ((1 ∈ ℝ ∧ 0 ≤ 1) ∧ 𝑑 ∈ ℝ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6159, 31, 59, 33, 60syl22anc 838 . . . . . . . . . 10 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → ((1 ≤ (√‘𝐷) ∧ 1 ≤ 𝑑) → (1 · 1) ≤ ((√‘𝐷) · 𝑑)))
6256, 58, 61mp2and 699 . . . . . . . . 9 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 · 1) ≤ ((√‘𝐷) · 𝑑))
6340, 62eqbrtrrid 5143 . . . . . . . 8 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 ≤ ((√‘𝐷) · 𝑑))
6423, 23, 27, 34, 39, 63le2addd 11797 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (1 + 1) ≤ (𝑐 + ((√‘𝐷) · 𝑑)))
6523, 25, 35, 37, 64ltletrd 11334 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
6665adantr 480 . . . . 5 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → 1 < (𝑐 + ((√‘𝐷) · 𝑑)))
67 breq2 5111 . . . . . 6 (𝑥 = (𝑐 + ((√‘𝐷) · 𝑑)) → (1 < 𝑥 ↔ 1 < (𝑐 + ((√‘𝐷) · 𝑑))))
6867rspcev 3588 . . . . 5 (((𝑐 + ((√‘𝐷) · 𝑑)) ∈ (Pell1QR‘𝐷) ∧ 1 < (𝑐 + ((√‘𝐷) · 𝑑))) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
6921, 66, 68syl2anc 584 . . . 4 (((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) ∧ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
7069ex 412 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝑐 ∈ ℕ ∧ 𝑑 ∈ ℕ)) → (((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7170rexlimdvva 3194 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (∃𝑐 ∈ ℕ ∃𝑑 ∈ ℕ ((𝑐↑2) − (𝐷 · (𝑑↑2))) = 1 → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥))
7211, 71mpd 15 1 (𝐷 ∈ (ℕ ∖ ◻NN) → ∃𝑥 ∈ (Pell1QR‘𝐷)1 < 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cdif 3911   class class class wbr 5107  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cq 12907  cexp 14026  csqrt 15199  NNcsquarenn 42824  Pell1QRcpell1qr 42825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-ico 13312  df-fz 13469  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706  df-squarenn 42829  df-pell1qr 42830
This theorem is referenced by:  pellfundre  42869  pellfundge  42870  pellfundglb  42873
  Copyright terms: Public domain W3C validator