| Step | Hyp | Ref
| Expression |
| 1 | | ax-1ne0 11224 |
. . 3
⊢ 1 ≠
0 |
| 2 | | 1re 11261 |
. . . 4
⊢ 1 ∈
ℝ |
| 3 | | 0re 11263 |
. . . 4
⊢ 0 ∈
ℝ |
| 4 | 2, 3 | lttri2i 11375 |
. . 3
⊢ (1 ≠ 0
↔ (1 < 0 ∨ 0 < 1)) |
| 5 | 1, 4 | mpbi 230 |
. 2
⊢ (1 < 0
∨ 0 < 1) |
| 6 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 1 → (𝑥 < 0 ↔ 1 < 0)) |
| 7 | 6 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 1 → ((1 < 0 →
𝑥 < 0) ↔ (1 < 0
→ 1 < 0))) |
| 8 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (𝑥 < 0 ↔ 𝑦 < 0)) |
| 9 | 8 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((1 < 0 → 𝑥 < 0) ↔ (1 < 0 → 𝑦 < 0))) |
| 10 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (𝑥 < 0 ↔ (𝑦 + 1) < 0)) |
| 11 | 10 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((1 < 0 → 𝑥 < 0) ↔ (1 < 0 →
(𝑦 + 1) <
0))) |
| 12 | | breq1 5146 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) |
| 13 | 12 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((1 < 0 → 𝑥 < 0) ↔ (1 < 0 → 𝐴 < 0))) |
| 14 | | id 22 |
. . . . . 6
⊢ (1 < 0
→ 1 < 0) |
| 15 | | simp1 1137 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
𝑦 ∈
ℕ) |
| 16 | 15 | nnred 12281 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
𝑦 ∈
ℝ) |
| 17 | | 1red 11262 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → 1
∈ ℝ) |
| 18 | 16, 17 | readdcld 11290 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
(𝑦 + 1) ∈
ℝ) |
| 19 | 3, 2 | readdcli 11276 |
. . . . . . . . . 10
⊢ (0 + 1)
∈ ℝ |
| 20 | 19 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → (0 +
1) ∈ ℝ) |
| 21 | | 0red 11264 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → 0
∈ ℝ) |
| 22 | | simp3 1139 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
𝑦 < 0) |
| 23 | 16, 21, 17, 22 | ltadd1dd 11874 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
(𝑦 + 1) < (0 +
1)) |
| 24 | | ax-1cn 11213 |
. . . . . . . . . . 11
⊢ 1 ∈
ℂ |
| 25 | 24 | addlidi 11449 |
. . . . . . . . . 10
⊢ (0 + 1) =
1 |
| 26 | | simp2 1138 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → 1
< 0) |
| 27 | 25, 26 | eqbrtrid 5178 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → (0 +
1) < 0) |
| 28 | 18, 20, 21, 23, 27 | lttrd 11422 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
(𝑦 + 1) <
0) |
| 29 | 28 | 3exp 1120 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (1 < 0
→ (𝑦 < 0 →
(𝑦 + 1) <
0))) |
| 30 | 29 | a2d 29 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → ((1 <
0 → 𝑦 < 0) →
(1 < 0 → (𝑦 + 1)
< 0))) |
| 31 | 7, 9, 11, 13, 14, 30 | nnind 12284 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (1 < 0
→ 𝐴 <
0)) |
| 32 | 31 | imp 406 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 1 < 0)
→ 𝐴 <
0) |
| 33 | 32 | lt0ne0d 11828 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 1 < 0)
→ 𝐴 ≠
0) |
| 34 | | breq2 5147 |
. . . . . . 7
⊢ (𝑥 = 1 → (0 < 𝑥 ↔ 0 <
1)) |
| 35 | 34 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 1 → ((0 < 1 → 0
< 𝑥) ↔ (0 < 1
→ 0 < 1))) |
| 36 | | breq2 5147 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → (0 < 𝑥 ↔ 0 < 𝑦)) |
| 37 | 36 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝑦 → ((0 < 1 → 0 < 𝑥) ↔ (0 < 1 → 0 <
𝑦))) |
| 38 | | breq2 5147 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → (0 < 𝑥 ↔ 0 < (𝑦 + 1))) |
| 39 | 38 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = (𝑦 + 1) → ((0 < 1 → 0 < 𝑥) ↔ (0 < 1 → 0 <
(𝑦 + 1)))) |
| 40 | | breq2 5147 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) |
| 41 | 40 | imbi2d 340 |
. . . . . 6
⊢ (𝑥 = 𝐴 → ((0 < 1 → 0 < 𝑥) ↔ (0 < 1 → 0 <
𝐴))) |
| 42 | | id 22 |
. . . . . 6
⊢ (0 < 1
→ 0 < 1) |
| 43 | | simp1 1137 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) →
𝑦 ∈
ℕ) |
| 44 | 43 | nnred 12281 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) →
𝑦 ∈
ℝ) |
| 45 | | 1red 11262 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) → 1
∈ ℝ) |
| 46 | | simp3 1139 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) → 0
< 𝑦) |
| 47 | | simp2 1138 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) → 0
< 1) |
| 48 | 44, 45, 46, 47 | addgt0d 11838 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) → 0
< (𝑦 +
1)) |
| 49 | 48 | 3exp 1120 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → (0 < 1
→ (0 < 𝑦 → 0
< (𝑦 +
1)))) |
| 50 | 49 | a2d 29 |
. . . . . 6
⊢ (𝑦 ∈ ℕ → ((0 <
1 → 0 < 𝑦) →
(0 < 1 → 0 < (𝑦
+ 1)))) |
| 51 | 35, 37, 39, 41, 42, 50 | nnind 12284 |
. . . . 5
⊢ (𝐴 ∈ ℕ → (0 < 1
→ 0 < 𝐴)) |
| 52 | 51 | imp 406 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 0 < 1)
→ 0 < 𝐴) |
| 53 | 52 | gt0ne0d 11827 |
. . 3
⊢ ((𝐴 ∈ ℕ ∧ 0 < 1)
→ 𝐴 ≠
0) |
| 54 | 33, 53 | jaodan 960 |
. 2
⊢ ((𝐴 ∈ ℕ ∧ (1 < 0
∨ 0 < 1)) → 𝐴
≠ 0) |
| 55 | 5, 54 | mpan2 691 |
1
⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |