Step | Hyp | Ref
| Expression |
1 | | ax-1ne0 10871 |
. . 3
⊢ 1 ≠
0 |
2 | | 1re 10906 |
. . . 4
⊢ 1 ∈
ℝ |
3 | | 0re 10908 |
. . . 4
⊢ 0 ∈
ℝ |
4 | 2, 3 | lttri2i 11019 |
. . 3
⊢ (1 ≠ 0
↔ (1 < 0 ∨ 0 < 1)) |
5 | 1, 4 | mpbi 229 |
. 2
⊢ (1 < 0
∨ 0 < 1) |
6 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = 1 → (𝑥 < 0 ↔ 1 < 0)) |
7 | 6 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 1 → ((1 < 0 →
𝑥 < 0) ↔ (1 < 0
→ 1 < 0))) |
8 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝑥 < 0 ↔ 𝑦 < 0)) |
9 | 8 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((1 < 0 → 𝑥 < 0) ↔ (1 < 0 → 𝑦 < 0))) |
10 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (𝑥 < 0 ↔ (𝑦 + 1) < 0)) |
11 | 10 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → ((1 < 0 → 𝑥 < 0) ↔ (1 < 0 →
(𝑦 + 1) <
0))) |
12 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (𝑥 < 0 ↔ 𝐴 < 0)) |
13 | 12 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((1 < 0 → 𝑥 < 0) ↔ (1 < 0 → 𝐴 < 0))) |
14 | | id 22 |
. . . . . . 7
⊢ (1 < 0
→ 1 < 0) |
15 | | simp1 1134 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
𝑦 ∈
ℕ) |
16 | 15 | nnred 11918 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
𝑦 ∈
ℝ) |
17 | | 1red 10907 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → 1
∈ ℝ) |
18 | 16, 17 | readdcld 10935 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
(𝑦 + 1) ∈
ℝ) |
19 | 3, 2 | readdcli 10921 |
. . . . . . . . . . 11
⊢ (0 + 1)
∈ ℝ |
20 | 19 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → (0 +
1) ∈ ℝ) |
21 | | 0red 10909 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → 0
∈ ℝ) |
22 | | simp3 1136 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
𝑦 < 0) |
23 | 16, 21, 17, 22 | ltadd1dd 11516 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
(𝑦 + 1) < (0 +
1)) |
24 | | ax-1cn 10860 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℂ |
25 | 24 | addid2i 11093 |
. . . . . . . . . . 11
⊢ (0 + 1) =
1 |
26 | | simp2 1135 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → 1
< 0) |
27 | 25, 26 | eqbrtrid 5105 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) → (0 +
1) < 0) |
28 | 18, 20, 21, 23, 27 | lttrd 11066 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 1 < 0
∧ 𝑦 < 0) →
(𝑦 + 1) <
0) |
29 | 28 | 3exp 1117 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → (1 < 0
→ (𝑦 < 0 →
(𝑦 + 1) <
0))) |
30 | 29 | a2d 29 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → ((1 <
0 → 𝑦 < 0) →
(1 < 0 → (𝑦 + 1)
< 0))) |
31 | 7, 9, 11, 13, 14, 30 | nnind 11921 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → (1 < 0
→ 𝐴 <
0)) |
32 | 31 | imp 406 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 1 < 0)
→ 𝐴 <
0) |
33 | 32 | lt0ne0d 11470 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 1 < 0)
→ 𝐴 ≠
0) |
34 | 33 | ex 412 |
. . 3
⊢ (𝐴 ∈ ℕ → (1 < 0
→ 𝐴 ≠
0)) |
35 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑥 = 1 → (0 < 𝑥 ↔ 0 <
1)) |
36 | 35 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 1 → ((0 < 1 → 0
< 𝑥) ↔ (0 < 1
→ 0 < 1))) |
37 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑥 = 𝑦 → (0 < 𝑥 ↔ 0 < 𝑦)) |
38 | 37 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 𝑦 → ((0 < 1 → 0 < 𝑥) ↔ (0 < 1 → 0 <
𝑦))) |
39 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 + 1) → (0 < 𝑥 ↔ 0 < (𝑦 + 1))) |
40 | 39 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = (𝑦 + 1) → ((0 < 1 → 0 < 𝑥) ↔ (0 < 1 → 0 <
(𝑦 + 1)))) |
41 | | breq2 5074 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) |
42 | 41 | imbi2d 340 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → ((0 < 1 → 0 < 𝑥) ↔ (0 < 1 → 0 <
𝐴))) |
43 | | id 22 |
. . . . . . 7
⊢ (0 < 1
→ 0 < 1) |
44 | | simp1 1134 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) →
𝑦 ∈
ℕ) |
45 | 44 | nnred 11918 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) →
𝑦 ∈
ℝ) |
46 | | 1red 10907 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) → 1
∈ ℝ) |
47 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) → 0
< 𝑦) |
48 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) → 0
< 1) |
49 | 45, 46, 47, 48 | addgt0d 11480 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℕ ∧ 0 < 1
∧ 0 < 𝑦) → 0
< (𝑦 +
1)) |
50 | 49 | 3exp 1117 |
. . . . . . . 8
⊢ (𝑦 ∈ ℕ → (0 < 1
→ (0 < 𝑦 → 0
< (𝑦 +
1)))) |
51 | 50 | a2d 29 |
. . . . . . 7
⊢ (𝑦 ∈ ℕ → ((0 <
1 → 0 < 𝑦) →
(0 < 1 → 0 < (𝑦
+ 1)))) |
52 | 36, 38, 40, 42, 43, 51 | nnind 11921 |
. . . . . 6
⊢ (𝐴 ∈ ℕ → (0 < 1
→ 0 < 𝐴)) |
53 | 52 | imp 406 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 0 < 1)
→ 0 < 𝐴) |
54 | 53 | gt0ne0d 11469 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 0 < 1)
→ 𝐴 ≠
0) |
55 | 54 | ex 412 |
. . 3
⊢ (𝐴 ∈ ℕ → (0 < 1
→ 𝐴 ≠
0)) |
56 | 34, 55 | jaod 855 |
. 2
⊢ (𝐴 ∈ ℕ → ((1 <
0 ∨ 0 < 1) → 𝐴
≠ 0)) |
57 | 5, 56 | mpi 20 |
1
⊢ (𝐴 ∈ ℕ → 𝐴 ≠ 0) |