MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofth Structured version   Visualization version   GIF version

Theorem cofth 17875
Description: The composition of two faithful functors is faithful. Proposition 3.30(c) in [Adamek] p. 35. (Contributed by Mario Carneiro, 28-Jan-2017.)
Hypotheses
Ref Expression
cofth.f (𝜑𝐹 ∈ (𝐶 Faith 𝐷))
cofth.g (𝜑𝐺 ∈ (𝐷 Faith 𝐸))
Assertion
Ref Expression
cofth (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Faith 𝐸))

Proof of Theorem cofth
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relfunc 17800 . . 3 Rel (𝐶 Func 𝐸)
2 fthfunc 17847 . . . . 5 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
3 cofth.f . . . . 5 (𝜑𝐹 ∈ (𝐶 Faith 𝐷))
42, 3sselid 3941 . . . 4 (𝜑𝐹 ∈ (𝐶 Func 𝐷))
5 fthfunc 17847 . . . . 5 (𝐷 Faith 𝐸) ⊆ (𝐷 Func 𝐸)
6 cofth.g . . . . 5 (𝜑𝐺 ∈ (𝐷 Faith 𝐸))
75, 6sselid 3941 . . . 4 (𝜑𝐺 ∈ (𝐷 Func 𝐸))
84, 7cofucl 17826 . . 3 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Func 𝐸))
9 1st2nd 7997 . . 3 ((Rel (𝐶 Func 𝐸) ∧ (𝐺func 𝐹) ∈ (𝐶 Func 𝐸)) → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
101, 8, 9sylancr 587 . 2 (𝜑 → (𝐺func 𝐹) = ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩)
11 1st2ndbr 8000 . . . . 5 ((Rel (𝐶 Func 𝐸) ∧ (𝐺func 𝐹) ∈ (𝐶 Func 𝐸)) → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
121, 8, 11sylancr 587 . . . 4 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)))
13 eqid 2729 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
14 eqid 2729 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
15 eqid 2729 . . . . . . . 8 (Hom ‘𝐸) = (Hom ‘𝐸)
16 relfth 17849 . . . . . . . . 9 Rel (𝐷 Faith 𝐸)
176adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Faith 𝐸))
18 1st2ndbr 8000 . . . . . . . . 9 ((Rel (𝐷 Faith 𝐸) ∧ 𝐺 ∈ (𝐷 Faith 𝐸)) → (1st𝐺)(𝐷 Faith 𝐸)(2nd𝐺))
1916, 17, 18sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐺)(𝐷 Faith 𝐸)(2nd𝐺))
20 eqid 2729 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
21 relfunc 17800 . . . . . . . . . . 11 Rel (𝐶 Func 𝐷)
224adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Func 𝐷))
23 1st2ndbr 8000 . . . . . . . . . . 11 ((Rel (𝐶 Func 𝐷) ∧ 𝐹 ∈ (𝐶 Func 𝐷)) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2421, 22, 23sylancr 587 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Func 𝐷)(2nd𝐹))
2520, 13, 24funcf1 17804 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹):(Base‘𝐶)⟶(Base‘𝐷))
26 simprl 770 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶))
2725, 26ffvelcdmd 7039 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑥) ∈ (Base‘𝐷))
28 simprr 772 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶))
2925, 28ffvelcdmd 7039 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st𝐹)‘𝑦) ∈ (Base‘𝐷))
3013, 14, 15, 19, 27, 29fthf1 17857 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))–1-1→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
31 eqid 2729 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
32 relfth 17849 . . . . . . . . 9 Rel (𝐶 Faith 𝐷)
333adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹 ∈ (𝐶 Faith 𝐷))
34 1st2ndbr 8000 . . . . . . . . 9 ((Rel (𝐶 Faith 𝐷) ∧ 𝐹 ∈ (𝐶 Faith 𝐷)) → (1st𝐹)(𝐶 Faith 𝐷)(2nd𝐹))
3532, 33, 34sylancr 587 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (1st𝐹)(𝐶 Faith 𝐷)(2nd𝐹))
3620, 31, 14, 35, 26, 28fthf1 17857 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦)))
37 f1co 6749 . . . . . . 7 (((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)):(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))–1-1→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))) ∧ (𝑥(2nd𝐹)𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st𝐹)‘𝑥)(Hom ‘𝐷)((1st𝐹)‘𝑦))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
3830, 36, 37syl2anc 584 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
397adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐺 ∈ (𝐷 Func 𝐸))
4020, 22, 39, 26, 28cofu2nd 17823 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦) = ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)))
41 eqidd 2730 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(Hom ‘𝐶)𝑦) = (𝑥(Hom ‘𝐶)𝑦))
4220, 22, 39, 26cofu1 17822 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑥) = ((1st𝐺)‘((1st𝐹)‘𝑥)))
4320, 22, 39, 28cofu1 17822 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((1st ‘(𝐺func 𝐹))‘𝑦) = ((1st𝐺)‘((1st𝐹)‘𝑦)))
4442, 43oveq12d 7387 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) = (((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦))))
4540, 41, 44f1eq123d 6774 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ((𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)) ↔ ((((1st𝐹)‘𝑥)(2nd𝐺)((1st𝐹)‘𝑦)) ∘ (𝑥(2nd𝐹)𝑦)):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st𝐺)‘((1st𝐹)‘𝑥))(Hom ‘𝐸)((1st𝐺)‘((1st𝐹)‘𝑦)))))
4638, 45mpbird 257 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
4746ralrimivva 3178 . . . 4 (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦)))
4820, 31, 15isfth2 17855 . . . 4 ((1st ‘(𝐺func 𝐹))(𝐶 Faith 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ((1st ‘(𝐺func 𝐹))(𝐶 Func 𝐸)(2nd ‘(𝐺func 𝐹)) ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)(𝑥(2nd ‘(𝐺func 𝐹))𝑦):(𝑥(Hom ‘𝐶)𝑦)–1-1→(((1st ‘(𝐺func 𝐹))‘𝑥)(Hom ‘𝐸)((1st ‘(𝐺func 𝐹))‘𝑦))))
4912, 47, 48sylanbrc 583 . . 3 (𝜑 → (1st ‘(𝐺func 𝐹))(𝐶 Faith 𝐸)(2nd ‘(𝐺func 𝐹)))
50 df-br 5103 . . 3 ((1st ‘(𝐺func 𝐹))(𝐶 Faith 𝐸)(2nd ‘(𝐺func 𝐹)) ↔ ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Faith 𝐸))
5149, 50sylib 218 . 2 (𝜑 → ⟨(1st ‘(𝐺func 𝐹)), (2nd ‘(𝐺func 𝐹))⟩ ∈ (𝐶 Faith 𝐸))
5210, 51eqeltrd 2828 1 (𝜑 → (𝐺func 𝐹) ∈ (𝐶 Faith 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cop 4591   class class class wbr 5102  ccom 5635  Rel wrel 5636  1-1wf1 6496  cfv 6499  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  Hom chom 17207   Func cfunc 17792  func ccofu 17794   Faith cfth 17843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-ixp 8848  df-cat 17605  df-cid 17606  df-func 17796  df-cofu 17798  df-fth 17845
This theorem is referenced by:  coffth  17876
  Copyright terms: Public domain W3C validator