MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomsdomcard Structured version   Visualization version   GIF version

Theorem sdomsdomcard 10559
Description: A set strictly dominates iff its cardinal strictly dominates. (Contributed by NM, 30-Oct-2003.)
Assertion
Ref Expression
sdomsdomcard (𝐴 β‰Ί 𝐡 ↔ 𝐴 β‰Ί (cardβ€˜π΅))

Proof of Theorem sdomsdomcard
StepHypRef Expression
1 relsdom 8950 . . . . 5 Rel β‰Ί
21brrelex2i 5733 . . . 4 (𝐴 β‰Ί 𝐡 β†’ 𝐡 ∈ V)
3 numth3 10469 . . . 4 (𝐡 ∈ V β†’ 𝐡 ∈ dom card)
4 cardid2 9952 . . . 4 (𝐡 ∈ dom card β†’ (cardβ€˜π΅) β‰ˆ 𝐡)
5 ensym 9003 . . . 4 ((cardβ€˜π΅) β‰ˆ 𝐡 β†’ 𝐡 β‰ˆ (cardβ€˜π΅))
62, 3, 4, 54syl 19 . . 3 (𝐴 β‰Ί 𝐡 β†’ 𝐡 β‰ˆ (cardβ€˜π΅))
7 sdomentr 9115 . . 3 ((𝐴 β‰Ί 𝐡 ∧ 𝐡 β‰ˆ (cardβ€˜π΅)) β†’ 𝐴 β‰Ί (cardβ€˜π΅))
86, 7mpdan 684 . 2 (𝐴 β‰Ί 𝐡 β†’ 𝐴 β‰Ί (cardβ€˜π΅))
9 sdomsdomcardi 9970 . 2 (𝐴 β‰Ί (cardβ€˜π΅) β†’ 𝐴 β‰Ί 𝐡)
108, 9impbii 208 1 (𝐴 β‰Ί 𝐡 ↔ 𝐴 β‰Ί (cardβ€˜π΅))
Colors of variables: wff setvar class
Syntax hints:   ↔ wb 205   ∈ wcel 2105  Vcvv 3473   class class class wbr 5148  dom cdm 5676  β€˜cfv 6543   β‰ˆ cen 8940   β‰Ί csdm 8942  cardccrd 9934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-ac2 10462
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-card 9938  df-ac 10115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator