MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdif Structured version   Visualization version   GIF version

Theorem sdomdif 8861
Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.)
Assertion
Ref Expression
sdomdif (𝐴𝐵 → (𝐵𝐴) ≠ ∅)

Proof of Theorem sdomdif
StepHypRef Expression
1 relsdom 8698 . . . . . 6 Rel ≺
21brrelex1i 5634 . . . . 5 (𝐴𝐵𝐴 ∈ V)
3 ssdif0 4294 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
4 ssdomg 8741 . . . . . . 7 (𝐴 ∈ V → (𝐵𝐴𝐵𝐴))
5 domnsym 8839 . . . . . . 7 (𝐵𝐴 → ¬ 𝐴𝐵)
64, 5syl6 35 . . . . . 6 (𝐴 ∈ V → (𝐵𝐴 → ¬ 𝐴𝐵))
73, 6syl5bir 242 . . . . 5 (𝐴 ∈ V → ((𝐵𝐴) = ∅ → ¬ 𝐴𝐵))
82, 7syl 17 . . . 4 (𝐴𝐵 → ((𝐵𝐴) = ∅ → ¬ 𝐴𝐵))
98con2d 134 . . 3 (𝐴𝐵 → (𝐴𝐵 → ¬ (𝐵𝐴) = ∅))
109pm2.43i 52 . 2 (𝐴𝐵 → ¬ (𝐵𝐴) = ∅)
1110neqned 2949 1 (𝐴𝐵 → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  wss 3883  c0 4253   class class class wbr 5070  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  domtriomlem  10129  konigthlem  10255  odcau  19124
  Copyright terms: Public domain W3C validator