MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdif Structured version   Visualization version   GIF version

Theorem sdomdif 9144
Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.)
Assertion
Ref Expression
sdomdif (𝐴𝐵 → (𝐵𝐴) ≠ ∅)

Proof of Theorem sdomdif
StepHypRef Expression
1 relsdom 8971 . . . . . 6 Rel ≺
21brrelex1i 5715 . . . . 5 (𝐴𝐵𝐴 ∈ V)
3 ssdif0 4346 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
4 ssdomg 9019 . . . . . . 7 (𝐴 ∈ V → (𝐵𝐴𝐵𝐴))
5 domnsym 9118 . . . . . . 7 (𝐵𝐴 → ¬ 𝐴𝐵)
64, 5syl6 35 . . . . . 6 (𝐴 ∈ V → (𝐵𝐴 → ¬ 𝐴𝐵))
73, 6biimtrrid 243 . . . . 5 (𝐴 ∈ V → ((𝐵𝐴) = ∅ → ¬ 𝐴𝐵))
82, 7syl 17 . . . 4 (𝐴𝐵 → ((𝐵𝐴) = ∅ → ¬ 𝐴𝐵))
98con2d 134 . . 3 (𝐴𝐵 → (𝐴𝐵 → ¬ (𝐵𝐴) = ∅))
109pm2.43i 52 . 2 (𝐴𝐵 → ¬ (𝐵𝐴) = ∅)
1110neqned 2940 1 (𝐴𝐵 → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wne 2933  Vcvv 3464  cdif 3928  wss 3931  c0 4313   class class class wbr 5124  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967
This theorem is referenced by:  domtriomlem  10461  konigthlem  10587  odcau  19590
  Copyright terms: Public domain W3C validator