| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdomdif | Structured version Visualization version GIF version | ||
| Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.) |
| Ref | Expression |
|---|---|
| sdomdif | ⊢ (𝐴 ≺ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relsdom 8871 | . . . . . 6 ⊢ Rel ≺ | |
| 2 | 1 | brrelex1i 5667 | . . . . 5 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ∈ V) |
| 3 | ssdif0 4311 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∖ 𝐴) = ∅) | |
| 4 | ssdomg 8917 | . . . . . . 7 ⊢ (𝐴 ∈ V → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
| 5 | domnsym 9011 | . . . . . . 7 ⊢ (𝐵 ≼ 𝐴 → ¬ 𝐴 ≺ 𝐵) | |
| 6 | 4, 5 | syl6 35 | . . . . . 6 ⊢ (𝐴 ∈ V → (𝐵 ⊆ 𝐴 → ¬ 𝐴 ≺ 𝐵)) |
| 7 | 3, 6 | biimtrrid 243 | . . . . 5 ⊢ (𝐴 ∈ V → ((𝐵 ∖ 𝐴) = ∅ → ¬ 𝐴 ≺ 𝐵)) |
| 8 | 2, 7 | syl 17 | . . . 4 ⊢ (𝐴 ≺ 𝐵 → ((𝐵 ∖ 𝐴) = ∅ → ¬ 𝐴 ≺ 𝐵)) |
| 9 | 8 | con2d 134 | . . 3 ⊢ (𝐴 ≺ 𝐵 → (𝐴 ≺ 𝐵 → ¬ (𝐵 ∖ 𝐴) = ∅)) |
| 10 | 9 | pm2.43i 52 | . 2 ⊢ (𝐴 ≺ 𝐵 → ¬ (𝐵 ∖ 𝐴) = ∅) |
| 11 | 10 | neqned 2935 | 1 ⊢ (𝐴 ≺ 𝐵 → (𝐵 ∖ 𝐴) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ∅c0 4278 class class class wbr 5086 ≼ cdom 8862 ≺ csdm 8863 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 |
| This theorem is referenced by: domtriomlem 10328 konigthlem 10454 odcau 19511 |
| Copyright terms: Public domain | W3C validator |