MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomdif Structured version   Visualization version   GIF version

Theorem sdomdif 9156
Description: The difference of a set from a smaller set cannot be empty. (Contributed by Mario Carneiro, 5-Feb-2013.)
Assertion
Ref Expression
sdomdif (𝐴𝐵 → (𝐵𝐴) ≠ ∅)

Proof of Theorem sdomdif
StepHypRef Expression
1 relsdom 8977 . . . . . 6 Rel ≺
21brrelex1i 5738 . . . . 5 (𝐴𝐵𝐴 ∈ V)
3 ssdif0 4367 . . . . . 6 (𝐵𝐴 ↔ (𝐵𝐴) = ∅)
4 ssdomg 9027 . . . . . . 7 (𝐴 ∈ V → (𝐵𝐴𝐵𝐴))
5 domnsym 9130 . . . . . . 7 (𝐵𝐴 → ¬ 𝐴𝐵)
64, 5syl6 35 . . . . . 6 (𝐴 ∈ V → (𝐵𝐴 → ¬ 𝐴𝐵))
73, 6biimtrrid 242 . . . . 5 (𝐴 ∈ V → ((𝐵𝐴) = ∅ → ¬ 𝐴𝐵))
82, 7syl 17 . . . 4 (𝐴𝐵 → ((𝐵𝐴) = ∅ → ¬ 𝐴𝐵))
98con2d 134 . . 3 (𝐴𝐵 → (𝐴𝐵 → ¬ (𝐵𝐴) = ∅))
109pm2.43i 52 . 2 (𝐴𝐵 → ¬ (𝐵𝐴) = ∅)
1110neqned 2944 1 (𝐴𝐵 → (𝐵𝐴) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2098  wne 2937  Vcvv 3473  cdif 3946  wss 3949  c0 4326   class class class wbr 5152  cdom 8968  csdm 8969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973
This theorem is referenced by:  domtriomlem  10473  konigthlem  10599  odcau  19566
  Copyright terms: Public domain W3C validator